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Abstract

By using ergodic theory and a variational process, we study the macroscopic behavior of a thin
body with micro hight stiffness fibers randomly distributed according to a stationary point process.
The thickness of the body, the stiffness and the size of the cross sections of the fibers depend on a
small parameter ε. The variational limit functional energy obtained when ε tends to 0 is deterministic
and depends on two variables: one is the deformation of a two dimensional body and describes the
behavior of the medium in the matrix, the other captures the limit behavior of deformations in the
fibers when the thickness, the stiffness and the size section become increasingly thin.
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1 Introduction

In [19] we proposed a deterministic model of a randomly reinforced material with reference configuration,
an open cylinder O = Ô × (0, h), Ô ⊂ R2 including randomly distributed thin rigid fibers Tε(ω) =
εD(ω)×(0, h). Our objective was to provide a simplified but accurate model of the slices of the geomaterial
TexSolTM ([14, 16, 17]). Let us recall that this soil reinforcement process mixes the soil (sand) with a
wire and that the obtained material has a better mechanical resistance than the sand without wire. In our
simplified model we assumed the wire to cut the surface perpendicularly so that the thin parallel cylinders,
randomly distributed, represent the pieces of the wire which are perfectly stuck with a hyperelastic matrix
which represent the sand. This hypothesis is acceptable when the thickness h is small. The main objection
of this model is that h is fixed so that we did not say how h is small by comparison with the size ε of
the wires section. In this paper we go back to the asymptotic analysis studied in [19] when the thickness
h of the slice goes to zero with ε. We propose a two dimensional deterministic model which is a first
attempt in the scope of non linear elasticity at obtaining a variational equivalent model of a very thin
slices of randomly reinforced materials like TexsolTM . We do not assume the basic condition on the
elastic densities which ensures the principle of material frame-indifference. Furthermore our model does
not take into account the a.e. injectivity of the deformation maps, and the necessity of an infinite amount
of energy to compress a finite volume into zero volume. We hope to address this issue in future papers.

The open cylinder Oh(ε) := Ô × (0, h(ε)) of R3, whose basis is a domain Ô of R2, is a reference
configuration for a random fibered structure which may be described as follows. For ε > 0 we consider
the union of cylinders Tε(ω) := εD(ω)×R where D(ω) :=

⋃
i∈N D(ωi) and D(ωi) are disks distributed at

random in R2 following a stochastic point process ω = (ωi)i∈N of R2 associated with a suitable probability
space (Ω,A,P). The random fibered structure is then given by O =

(
Oh(ε) \ Tε(ω)

)
∪
(
Oh(ε) ∩ Tε(ω)

)
(Figure 1).

Figure 1: A slice of randomly fibered body of thikness h(ε)

We assume for instance the wire to be clamped on its lower sections and submitted to a surface loading
on its upper sections. The material in the matrix is only submitted to a volume loading (the force of
gravity). The equilibrium is described by the unique solution ūε(ω, .) of the variational problem (PEε,h(ε))

inf
u∈W 1,p

ε (Oh(ε),R3)

{ˆ
Oh(ε)\Tε

f(∇u) dx+
1
εa

ˆ
Oh(ε)∩Tε

g(∇u) dx− Φε(u)

}

Φε(u) :=
ˆ
Oh(ε)\Tε

Lε.u dx−
ˆ

bO∩εD `ε(x̂, h(ε)).u(x̂, h(ε)) dx̂

where f , g are two quasiconvex functions,

W 1,p
ε (Oh(ε),R3) :=

{
u ∈W 1,p(Oh(ε),R3) : u = 0 on Ô ∩ εD(ω)

}
,
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1
εa stands for the high stiffness of the wire, and Lε, `ε denote the loadings in L

p
p−1 (O \ Tε,R3) and the

topological dual of W 1,1− 1
p (Ô ∩ εD,R3) respectively. For short we sometimes drop ω for the notation

and, for instance, write Tε and D instead of Tε(ω) and D(ω).

Let denote by ūε(ω, .) a minimizer of (PEε,h(ε)). In this work we intend to study the behavior of
uε(ω, .) defined by uε(ω, x) = ūε

(
ω, x̂, h(ε)x3

)
, which is minimizer of the problem (PEε)

inf
u∈W 1,p

ε (O,R3)

{
h(ε)

ˆ
O\Tε

f(∇̂u, 1
h(ε)

∂u

∂x3
) dx+

h(ε)
εa

ˆ
O∩Tε

g(∇̂u, 1
h(ε)

∂u

∂x3
) dx−Ψε(u)

}

Ψε(u) =
ˆ
O\Tε

Lε.u dx−
ˆ

bO∩εD lε.u(x̂, 1)) dx̂,

where O = Ô × (0, 1), W 1,p
ε (O,R3) :=

{
u ∈W 1,p(O,R3) : u = 0 on Ô ∩ εD(ω)

}
and Lε, lε are the

rescaled loading given by Lε(x) = h(ε)Lε
(
x̂, h(ε)x3

)
and lε(x̂, 1) = `ε(x̂, h(ε)) respectively. The loading

Lε is assumed to be independent of ε and denoted by L while lε is assumed to be possibly very high,
precisely of the form ε−bl for some l in L

p
p−1 (Ô,R3). We perform the asymptotic analysis of (PEε) under

the conditions p > 1, a > 0 and h(ε) = εp. For the surface loading we assume b ≤ p− 1 + a
p and we will

see that the interesting case is b = p− 1 + a
p .

Let us denote by Ŷ the unit cell of R2, by f∞,p the p-recession function of the function f and, for all
λ ∈M3×2, set f̂∞,p(λ) := infξ∈R3 f∞,p

(
(λ|ξ)

)
where we identify the set of 3 × 1-matrices with R3. For

all s ∈ R3, let denote by f0(s) the almost sure limit when n→ +∞ of

inf
w∈W 1,p

0 (nŶ \D(ω),R3)

{ 
nŶ

f̂∞,p(∇w) dx̂ :
 
nŶ

w dx̂ = s

}
,

whose existence is ensured by an ergodic theorem in Section 2.3. Then we establish that uε(ω, .) almost
surely weakly converges in Lp(O,R3) to u satisfying for a.e. x̂ ∈ Ô (Corollary 2.1)

u(x̂) ∈ ∂f∗0
(ˆ 1

0

L(x̂, t) dt
)
.

In the case when f = 1
2 | . |

2 an easy computation yields (see Section 3.4)

u(x̂) =
Λ
2

ˆ 1

0

L(x̂, t) dt

where Λ is defined as follows: consider Un(ω, .) solving the scalar random Dirichlet problem{
−∆U = 1 in nŶ \D(ω),
U ∈W 1,2

0 (nŶ \D(ω)),

and set Λn(ω) :=
´
nŶ

Un(ω, .) dx̂. Then one can show that Λn(ω) almost surely converges when n tends
to +∞ toward a deterministic limit that we denote by Λ. This last result has to be compared with the
Darcy’s law in fluid mechanics (see [3, 10]) and may be considered as a Darcy’s law in the solid mechanics
framework.

Another significant fact is that 1O∩Tεuε(ω, .) and 1O∩Tε
∂uε(ω,.)
∂x3

strongly converge to 0 in Lp(O,R3).
We want to clarify these convergences: at what rate do these two functions converge to zero? To explore
this question, denoting by g∞,p the p-recession function of the function g, we establish that almost
surely, ε1−p− ap1O∩Tεuε(ω, .) and ε1−p− ap1O∩Tε

∂uε(ω,.)
∂x3

weakly converge in Lp(O,R3) toward v̄ and ∂v̄
∂x3
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respectively, where v̄ is the unique solution of the problem

− ∂

∂x3

(
D(g∞,p)⊥(

∂v

∂x3
)
)

= 0 in O,

v(x̂, 0) = 0 on Ô,

D(g∞,p)⊥( ∂v∂x3
).e3 = θp−1 l̃ on Ô + e3,

where

l̃ =

{
l if b = p− 1 + a

p

0 if b < p− 1 + a
p ,

g∞,p is the p-recession of the function g, (g∞,p)⊥(s) := g∞,p(0, s) for all s ∈ R, and θ =
ˆ

Ω

|Ŷ ∩

D(ω)| dP(ω) is the asymptotic volume fraction of the fibers (Corollary 2.1).

We perform these two asymptotic behaviors thanks to a variational convergence method (related to
the Γ-convergence) of the sole total energy functional

Eε(ω, u) := h(ε)
ˆ
O\Tε

f(∇̂u, 1
h(ε)

∂u

∂x3
) dx+

h(ε)
εa

ˆ
O∩Tε

g(∇̂u, 1
h(ε)

∂u

∂x3
) dx−Ψε(u)

of the problem (PEε) (Theorem 2.2).

2 The problem statement

2.1 Probabilistic setting

For all x = (x1, x2, x3) of R3, x̂ stands for (x1, x2) and we denote by Ŷ the unit cell (0, 1)2 of R2. For
any δ > 0 and any set Â of R2, we make use of the following notation: Âδ :=

{
x ∈ Â : d(x,R2 \ Â) > δ

}
.

For any bounded Borel set A of R2 or R3, |A| denotes its Lebesgue measure and #(A) its cardinal when
it is finite.

Let d be a given number satisfying 0 < d ≤ 1 and consider the set

Ω =
{

(ωi)i∈N : ωi ∈ R2, |ωi − ωj | ≥ d for i 6= j
}

equipped with the trace σ-algebra A of the standard product σ-algebra on Ω. Let B̂d/2(0) denote
the open ball of R2 centered at 0 with radius d/2, then for every ω = (ωi)(i)∈N we form the disk
D(ωi) := ωi + B̂d/2(0) and consider D(ω) :=

⋃
i∈N D(ωi). Therefore ω 7→ T (ω) = D(ω)× R is a random

set in R3, union of random cylinders, whose basis is the union of the pairwise disjoint disks D(ωi) of R2

centered at ωi. We set Tε(ω) := εD(ω) × R. For every z ∈ Z2 we define the operator τz : Ω → Ω by
τzω = ω − z. Note that D(τzω) = D(ω)− z.

We assume that there exists a probability measure on (Ω,A) which satisfies the system of three
following axioms:

(A1) Non sparsely distribution: P
({

ω ∈ Ω : |Ŷ ∩D(ω)| > 0
})

= 1;

(A2) Stationary condition: ∀z ∈ Z2, τz#P = P where τz#P denotes the probability image of P by τz;

(A3) Asymptotic mixing property: for all sets E and F of A, lim|z|→+∞P(τzE ∩ F ) = P(E)P(F ).
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Remark 2.1. i) It would be more natural to consider stationary condition (A2) with respect to the
continuous group (τt)t∈R2 defined in the same way by τtω = ω − t. Actually the discrete group
(τz)z∈Z3 suffices for the mathematical analysis. The size of the cell Ŷ is chosen in such a way to
fix the generator of the group (τz)z∈Z2 . Condition (A2) then says that every random function X
taking its source in Ω is statistically homogeneous in the sense that X and X ◦ τz have the same law
(i.e. X#P = X ◦ τz#P). Roughly speaking, moving a window Â in R2 following the translations
in R2, the distributions of cross sections in the window are statistically the same.

ii) Condition (A1) together with condition (A2) yield that the random set D(ω) is statistically not too
sparse in R2. Indeed for every Z2-translated Â = Ŷ + z of Ŷ

P
({
ω : |Â ∩D(ω)| > 0

})
= P

({
ω : |Ŷ ∩ (D(ω)− z)| > 0

})
= P

({
ω : |Ŷ ∩ (D(τzω))| > 0

})
= P

({
ω : |Ŷ ∩ (D(ω))| > 0

})
= 1.

iii) Condition (A3) says that the events τzE and F are independent provided that z be large enough.

iv) Consider ω̄ = (ω̄i)i∈N where ω̄i are the centers of the hexagonal close-packing of disks in R2. Then
ω̄ is a “maximal” distribution in the sense that |Ŷ ∩D(ω)| ≤ |Ŷ ∩D(ω̄)| for a.s. ω in Ω.

A simple specimen of probability space which fulfills all the conditions above is the generalized random
chessboard described bellow.

Example 2.1 (Random chessboard-like). Given d > 0 as previously, let us consider a countable set of
points Ω0 = {xk : k ∈ N} in Ŷd/2 and set Ω := Πz∈Z2Ωz where Ωz = Ω0 + z for all z ∈ Z2. We equip
Ω with the σ-algebra A generated by the cylinders of Ω. For a given family (αk)k∈N of non negative
numbers satisfying

∑
k∈N αk = 1 we consider the probability measure µ0 =

∑
k∈N αkδxk on Ω0 and the

product probability measure P = Πz∈Zµz on (Ω,A) where µz = µ0 for all z ∈ Z. Then it is easy to check
that P satisfies axioms (A1)-(A3).

Remark 2.2. All the results of the paper remain valid if we substitute for the disk B̂d/2(0), any connex
compact set of R2 included in B̂d/2(0) and chosen at random.

We would stress that, keeping the same probabilistic framework, but substituting now B̂rεd/2, rε → 0
for B̂d/2, for critical growth of r(ε), the limit problem seems to leads to a model which takes into account
the random capacity of D(ω). We aim to treat this case in a forthcoming paper.

2.2 Functional analysis setting

We are given two quasiconvex functions f and g defined on R3 satisfying the standard growth condition
of order p > 1: there exist two positive constants α, β, such that ∀ζ in M3×3

α|ζ|p ≤ f(ζ) ≤ β(1 + |ζ|p), (2.1)

idem for g. Note that f satisfies automatically the Lipschitz property

|f(ζ)− f(ζ ′)| ≤ `|ζ − ζ ′|(1 + |ζ|p−1 + |ζ ′|p−1) (2.2)

for all (ζ, ζ ′) ∈M3×3 ×M3×3 where ` is a positive constant, idem for g. Furthermore, we assume that
there exist β′ > 0, 0 < r < p and a p-positively homogeneous function f∞,p (the p-recession function of
f) such that for all ζ ∈M3×3

|f(ζ)− f∞,p(ζ ′)| ≤ β′(1 + |ζ|p−r). (2.3)
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From (2.3) we infer lim
t→+∞

f(tζ)
tp

= f∞,p(ζ) so that from (2.1), f∞,p satisfies for all ζ ∈M3×3

α|ζ|p ≤ f∞,p(ζ) ≤ β|ζ|p (2.4)

and
|f∞,p(ζ)− f∞,p(ζ ′)| ≤ `|ζ − ζ ′|(|ζ|p−1 + |ζ ′|p−1) (2.5)

for all (ζ, ζ ′) ∈ M3×3 ×M3×3. Finally λ 7→ f̂∞,p(λ) := infξ∈R3 f∞,p
(
(λ|ξ)

)
is assumed to be a convex

function in the set M3×2 of 3× 2-matrices.
We define the p-recession function g∞,p of g as in (2.3) and, for all s in R3, the function (g∞,p)⊥ by

(g∞,p)⊥(s) = inf
ξ∈M3×2

g∞,p(ξ|s),

and we assume that ∀s ∈ R3, (g∞,p)⊥(s) = g∞,p(0, s). Note that since g∞,p is a rank 1 convex function,
the density (g∞,p)⊥ is a convex function.

We consider the problem

(PHε,h(ε)) inf
{
Hε,h(ε)(ω, u)− 〈Lε, u〉 : u ∈ Lp(O,R3)

}
where the functional energy Hε is given in Lp(O,R3), p > 1 by

Hε,h(ε)(ω, u) =


ˆ
Oh(ε)\Tε

f(∇u) dx+
1
εa

ˆ
Oh(ε)∩Tε

g(∇u) dx if u ∈W 1,p
ε (Oh(ε),R3)

+∞ otherwise

and
W 1,p
ε (Oh(ε),R3) :=

{
u ∈W 1,p(Oh(ε),R3) : u = 0 on Ô ∩Dε(ω)

}
.

The loadings Lε and `ε satisfiy the following behavior: there exist L in Lq(O,R3), l in Lq(Ô,R3), q = p
p−1 ,

and b in R such that

Lε ≈
1

h(ε)
L1

(
x̂,

x3

h(ε)

)
in Oh(ε) \ Tε

`ε ≈ ε−bl(x̂, 1) on Ô ∩ εD.

Let us introduce the change of scale x3 = h(ε)y3. We want to study the behavior of uε(ω, x̂, x3) :=
ūε(ω, x̂, h(ε)x3) where ũε is a minimizer of (PHε,h(ε)). Clearly uε(ω, x̂, x3) is a minimizer of

(PHε) inf

{
Hε(ω, u)−

ˆ
O\Tε

L.u dx− ε−b
ˆ

bO∩εD l(x̂, 1).u(x̂, 1) dx̂ : u ∈ Lp(O,R3)

}

where

Hε(ω, u) =

 h(ε)
ˆ
O\Tε

f(∇̂u, 1
h(ε)

∂u

∂x3
) dx+ h(ε)ε−a

ˆ
O∩Tε

g(∇̂u, 1
h(ε)

∂u

∂x3
) dx if u ∈W 1,p

ε (O,R3)

+∞ otherwise,

W 1,p
ε (O,R3) :=

{
u ∈W 1,p(O,R3) : u = 0 on Ô ∩ εD(ω)

}
. We denote by Eε(ω, .) the total random en-

ergy defined for all u ∈ Lp(O,R3) by

Eε(ω, u) = Hε(ω, u)−
ˆ
O\Tε

L.u dx− ε−b
ˆ

bO∩εD l(x̂, 1).u(x̂, 1) dx̂.
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For the asymptotic analysis, we assume the following conditions:

a > 0, h(ε) = εp.

The condition a > 0 is introduced in order to supply a model with hight stiffness in the random cylinders,
the reason of the choice h(ε) = εp will appear in the next section. Roughly speaking, it is the good choice
that provides sufficient information on the behavior of any sequence (uε)ε>0 of bounded energy, i.e.,
statisfying supε>0Eε(ω, .) < +∞ (cf Lemma 2.1 in the next section). The rescalled internal energy
becomes now

Hε(ω, u) =

ε
p

ˆ
O\Tε

f(∇̂u, 1
εp

∂u

∂x3
) dx+ εp−a

ˆ
O∩Tε

g(∇̂u, 1
εp

∂u

∂x3
) dx if u ∈W 1,p

ε (O,R3)

+∞ otherwise.

We sometimes consider each two following functionals

Fε(ω, u) =

ε
p

ˆ
O\Tε

f(∇̂u, 1
εp

∂u

∂x3
) dx if u ∈W 1,p

Γ0
(O,R3)

+∞ otherwise,

and

Gε(ω, u) =

εp−a
ˆ
O∩Tε

g(∇̂u, 1
εp

∂u

∂x3
) dx if u ∈W 1,p

Γ0
(O,R3)

+∞ otherwise,

so that Hε(ω, .) = Fε(ω, .) +Gε(ω, .) in Lp(O,R3).

Let us set γ := p− 1 +
a

p
(note that γ > 0). We will distinguish the following two cases for which the

limit loading changes:

(C1) b = γ;

(C2) b < γ.

2.3 The limit densities

We are going to define the limit density energy associated with the functional Fε(ω, .) by defining a
suitable subadditive process defined in the probabilistic space (Ω,A,P) governed by axioms (A1)-(A3).
Let I denotes the set of all open intervals (a, b) of the lattice spanned by Ŷ . For all A ∈ I and all s in R3 set

SÂ(ω, s) := inf

{ˆ
Â\D(ω)

f̂∞,p(∇̂w(x̂)) dx̂ : w ∈ AdmÂ(ω, s)

}
,

AdmÂ(ω, s) :=
{
w ∈W 1,p

0

(
Â \D(ω),R3

)
:
 
Â

w dx = s, w = 0 on Â ∩D(ω)
}
.

Note that the random set D(ω) is not necessarily included in Â. It is standard to see that the random
functionals defined in the introduction are measurable when Ω×Lp(O,R3) is equipped with the product σ-
algebra A⊗B where B is the Borel σ-algebra associated with the normed space Lp(O,R3). Consequently,
for all fixed Â in I and all fixed s in R3, the map ω 7→ SÂ(ω, s) is measurable.

For each fixed s in R3, it is easily seen that S(., s) satisfies the subadditivity condition: for every
I ∈ I such that there exists a finite family (Ij)j∈J of disjoint intervals in I with |I \

⋃
j∈J Ij | = 0,

SI(., s) ≤
∑
j∈J
SIj (., s).

Moreover S(., s) is clearly covariant with respect to the group (τz)z∈Z2 , i.e., for all Â ∈ I and all z ∈ Z2,

SÂ+z(., s) = SÂ(., s) ◦ τz.

Actually we have
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Theorem 2.1. For all fixed s in R3 the map

S(., s) : I −→ L1(Ω,A,P)
Â 7−→ SÂ(., s)

is a subadditive process with respect to the group (τz)z∈Z2 defined by τz(ω) = ω − z. It satisfies for all
s ∈ R, all Â ∈ I and all δ > 0 small enough

SÂ(ω, s) ≤ C(p)
|s|p

δp
∣∣∣(Ŷ \D(ω̄))2δ

∣∣∣ |Â| (2.6)

where C(p) is a non negative constant depending only of p. Therefore for any regular family (In)n∈N of

sets in I the limit lim
n→∞

SIn(ω, s)
|In|

exists for P almost every ω ∈ Ω and

lim
n→∞

SIn(ω, s)
|In|

= inf
m∈N∗

{
E
S[0,m[2(., s)

m2

}
= lim

n→+∞

{
E
S[0,n[2(., s)

n2

}
.

We denote by f0(s) the common value above.

Proof. Reproduce the proof of Theorem 2.2 in [19] with minor change of notation.

Proposition 2.1. The function f0 is a positively homogeneous convex function of degree p, satisfies the
growth conditions (2.4) with the same constant α, with a constant β possibly different, and satisfies the
Lipschitz condition (2.5) with a constant L possibly different.

Proof. Reproduce the proof of Proposition 2.1 of [19].

Remark 2.3. On the deterministic case, after an easy calculation (reproduce the proof of Corollary 2.1
of [19]) one can show that the expression of f0 reduces to

f0(s) := inf

{ˆ
Ŷ \D

f̂∞,p(∇̂w(x)) dx : w ∈ Adm#(s)

}

Adm#(s) :=
{
w ∈W 1,p

# (Ŷ ,R3) :
 
Ŷ

w dx = s, w = 0 on Ŷ ∩D
}

where W 1,p
# (Ŷ ,R3) is the set of Ŷ -periodic functions in W 1,p(O,R3).

We end this section by the following proposition which is a consequence of Theorem 2.1 when S is
additive. It extends the Birkoff ergodic theorem.

Proposition 2.2. Le n be fixed in N∗, and ψ : Ω × R2 −→ R be a A ⊗ B(R2)-measurable function
satisfying the three conditions:

i) for P-almost every ω ∈ Ω, ŷ 7→ ψ(ω, ŷ) belongs to L1
loc(R2);

ii) for all bounded Borel set Â of R2 the map Â 7→
´
Â
ψ(ω, ŷ) dŷ belongs to L1(Ω,A,P);

iii) for all z ∈ nZ2, for all ŷ ∈ R2, ψ(ω, ŷ + z) = ψ(τzω, ŷ) for P-almost every ω ∈ Ω.

Then almost surely

ψ(ω,
.

ε
) ∗⇀ E

 
(0,n)2

ψ(., ŷ) dŷ

for the σ(L1(O), L∞(O)) topology.
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Proof. The assertion is a straightforward consequence of Theorem 4.2 and Proposition 5.3 in [9].

Note that the indicatrice function of the random set Tε ∩ O may be written 1D(ω)∩ bO( .ε ) and that
(ω, x̂) 7→ 1D(ω)∩ bO(.) satisfies the condition 1D(ω)∩ bO(x̂+ z) = 1D(τzω)∩ bO(x̂). Therefore, applying Propo-
sition 2.2 we infer that for P a.e. ω in Ω,

1D∩ bO(
.

ε
) ∗⇀

ˆ
Ω

|Ŷ ∩D(ω)| dP(ω). (2.7)

We will denote the limit
ˆ

Ω

|Ŷ ∩D(ω)| dP(ω) in (2.7) by θ and call it the asymptotic volume fraction of

the fibers.

2.4 Main results

In what follows we assume a > 0, p > 1, b ≤ p− 1 + a
p and set

V0(O,R3) :=
{
v ∈ Lp(O,R3) :

∂v

∂x3
∈ Lp(O,R3), v(x̂, 0) = 0

}
.

Lemma 2.1 (Compactness). Consider a sequence (uε)ε>0 in Lp(O,R3) of bounded energy, i.e., satisfying
for P a.s. ω ∈ Ω, supε>0Eε(ω, uε) < +∞. Then, for P a.s. ω ∈ Ω, there exist a subsequence possibly
depending on ω and (u, v) ∈ Lp(O,R3)× V0(O,R3) possibly depending on ω such that :

uε ⇀ u in Lp(O,R3), and
∂u

∂x3
= 0; (2.8)

ε−γa(ω,
.

ε
)uε ⇀ v in Lp(O,R3); (2.9)

ε−γa(ω,
.

ε
)
∂uε
∂x3

⇀
∂v

∂x3
in Lp(O,R3); (2.10)

Remark 2.4. In an unloaded body, If we only look at the free energy of the material, (2.8), (2.9) and
(2.10) hold under the only conditions a > 0 and p > 1.

As suggested by the statement of Lemma 2.1, for every fixed ω ∈ Ω we introduce the following
convenient notation for any sequence (uε)ε>0 in Lp(O,R3):

uε ⇀⇀ (u, v) ⇐⇒

 uε ⇀ u ∈ Lp(O,R3)

ε−γa(ω, .ε )uε ⇀ v in Lp(O,R3).

In a sense made precise below, we are going to establish the almost sure variational convergence of the
sequence (Eε(ω, .))ε>0, associated with the convergence ⇀⇀ above, toward a deterministic functional
E0 defined in Lp(O,R3)×Lp(O,R3) as follows. Let denote by H0 the functional defined in Lp(O,R3)×
Lp(O,R3) by

H0(u, v) =


ˆ
Ô
f0(u) dx̂+ θ1−p

ˆ
O

(g∞,p)⊥(
∂v

∂x3
)dx if (u, v) ∈ Lp(O,R3)× V0(O,R3)

+∞ otherwise.

where f0 and (g∞,p)⊥ are the two functions defined in Section 2.3. In the proofs we will consider the two
functionals defined in Lp(O,R3) by

F0(u) =
ˆ
Ô
f0(u)dx̂

and

G0(u) =

θ1−p
ˆ
O

(g∞,p)⊥(
∂v

∂x3
)dx if v ∈ V0(O,R3)

+∞ otherwise,

so that H0(u, v) = F0(u) +G0(v) in Lp(O,R3)× V0(O,R3). We define the limit energy E0 by:

9



. Case (C1): b = γ

E0(u, v) =


H0(u, v)−

ˆ
O
L.u dx−

ˆ
bO l.v dx̂ if (u, v) ∈ Lp(O,R3)× V0(O,R3)

+∞ otherwise

. Case (C2): b < γ

E0(u, v) =


H0(u, v)−

ˆ
O
L.u dx if (u, v) ∈ Lp(O,R3)× V0(O,R3)

+∞ otherwise.

Here is our main result:

Theorem 2.2. The sequence of functionals Eε almost surely converges to the functional E0 in the
following sense: there exists Ω′ ∈ A with P(Ω′) = 1 such that for all ω ∈ Ω′ one has

i) for all (u, v) ∈ Lp(O,R3) × V0 and for all sequence (uε)ε>0 in Lp(O,R3) such that uε ⇀⇀ (u, v),
then lim inf

ε→0
Eε(uε) ≥ E0(u, v);

ii) for all (u, v) ∈ Lp(O,R3)×V0, there exists a sequence (uε)ε>0 in Lp(O,R3) such that uε ⇀⇀ (u, v)
and lim sup

ε→0
Eε(uε) ≤ E0(u, v).

Corollary 2.1. Let denote by uε(ω, .) the function x 7→ ūε
(
ω, x̂, h(ε)x3

)
, where ūε(ω, .) is the solution

of (PHε,h(ε)) and assume that (g∞,p)⊥ is differentiable. Then almost surely there exists a subsequence of
(uε(ω, .))ε>0 such that uε(ω, .) ⇀ u in Lp(O,R3) with for a. e. x̂ ∈ Ô,

u(x̂) ∈ ∂f∗0
(
L̄)

where L̄(x̂) =
ˆ 1

0

L1(x̂, t) dt. Consequently if ∂f∗0 is single valued then almost surely all the sequence

(uε(ω, .))ε>0 weakly converges in Lp(O,R3) to u defined for a.e. x̂ ∈ Ô by

u(x̂) = ∂f∗0

(
L̄).

Moreover almost surely ε−γ1Tε∩Ouε(ω, .) and ε−γ1Tε∩O
∂uε(ω,.)
∂x3

weakly converge to v̄ and ∂v̄
∂x3

in
Lp(O,R3)) respectively, where v̄ is the unique solution of

− ∂

∂x3

(dg∞,p)⊥
ds

(
∂v

∂x3
)
)

= 0 in O,

v(x̂, 0) = 0 on Ô,

D(g∞,p)⊥( ∂v∂x3
).e3 = θp−1 l̃ on Ô + e3.

where l̃ =

{
l when b = γ

0 if b < γ.

By eliminating the displacement v regarded as an internal variable, from Theorem 2.2 we easily deduce

Corollary 2.2. The sequence of energies Eε(ω, .) almost surely Γ-converges to the zero-gradient energy
functional Ẽ0(u) := inf {E0(u, v) : v ∈ V0} which is explicitely given in Lp(Ô,R3) by

Ẽ0(u) =


ˆ

bO f0(u) dx̂−
ˆ

bO u.L̄ dx̂+G0(v̄)−
ˆ

bO l.v̄ dx̂ if b = γ,ˆ
bO f0(u) dx̂−

ˆ
bO u.L̄ dx̂ if b < γ.
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3 Proofs of the results

In what follows C will denote various constants which may depend on ω and may vary from line to line.

3.1 Proof of the compactness Lemma

Proof. Fix ω in the subset of Ω of full probability for which (A1) holds and consider (uε)ε>0 ∈ Lp(O,R3)
such that supε>0Eε(ω, uε) < +∞. According to the Poincaré-Wirtinger inequality, there exists a constant
C such that

ˆ
O

∣∣∣∣uε −  
O∩Tε

uε dx

∣∣∣∣p dx ≤ Cεp
ˆ
O

∣∣∣∇̂uε∣∣∣p dx
≤ Cεp

ˆ
O\Tε

∣∣∣∇̂uε∣∣∣p dx+ Cεp−a
ˆ
O∩Tε

∣∣∣∇̂uε∣∣∣p dx
(see [19], Lemma 3.1). By using Poincaré inequality, growth conditions satisfyed by f and g and the fact
that γ > 0, we infer

ˆ
O
|uε|p dx ≤

ˆ
O∩Tε

|uε|p dx+ Cεp
ˆ
O\Tε

∣∣∣∇̂uε∣∣∣p dx+ Cεp−a
ˆ
O∩Tε

∣∣∣∇̂uε∣∣∣p dx
≤

ˆ
O∩Tε

∣∣∣∣∂uε∂x3

∣∣∣∣p dx+ Cεp
ˆ
O\Tε

∣∣∣∇̂uε∣∣∣p dx+ Cεp−a
ˆ
O∩Tε

∣∣∣∇̂uε∣∣∣p dx
≤ εpγ

α
Hε(uε) + CHε(uε)

≤ CHε(uε). (3.1)

On the other hand, according to st ≤ νp

p
sp +

1
qνq

tq with s ≥ 0, s ≥ 0 and ν > 0 suitably chosen later,

noticing that ˆ
bO∩εD |uε(x̂, 1)|p dx̂ ≤

ˆ
O∩Tε

∣∣∣∣∂uε∂x3

∣∣∣∣p dx,

and since b ≤ γ, we deduce

Hε(ω, uε) ≤ C +
∣∣∣∣ˆ
O
Lε.uε dx

∣∣∣∣+
∣∣∣∣ˆ bO∩εD ε

−bl.uε dx̂

∣∣∣∣
≤ C +

1
qνq

ˆ
O\Tε

|L|q dx+
νp

p

ˆ
O\Tε

|uε|p dx+
1
qνq

ˆ
bO∩εD |l|

q
dx̂+

νp

p
ε−pb

ˆ
O∩Tε

∣∣∣∣∂uε∂x3

∣∣∣∣p dx

≤ C +
νp

p

ˆ
O
|uε|p dx+

νp

αp
Hε(ω, uε). (3.2)

Thus (
1− νp

αp

)
Hε(ω, uε) ≤ C +

νp

p

ˆ
O
|uε|p dx. (3.3)

Combining (3.3) with (3.1) we infer
ˆ
O
|uε|p dx ≤ C + C

νp

δ(ν)

ˆ
O\Tε

|uε|p dx

where δ(ν) :=
1

1− νp

αp

. Choosing ν small enough in such a way that C
νp

δ(ν)
<

1
2

we obtain

ˆ
O
|uε|p dx ≤ C (3.4)
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so that uε weakly converges to some u in Lp(O,R3). Moreover (3.3), (3.4) yield Hε(ω, uε) ≤ C. Therefore,
according to the coercivity assumption on f and g, we infer

ε−p
ˆ
O\Tε

∣∣∣∣∂uε∂x3

∣∣∣∣p dx+ ε−pγ
ˆ
O∩Tε

∣∣∣∣∂uε∂x3

∣∣∣∣p dx ≤ C; (3.5)

ε−pγ
ˆ
O∩Tε

∣∣∣∣∂uε∂x3

∣∣∣∣p dx ≤ C;

ε−pγ
ˆ
O∩Tε

|uε|p dx ≤ C.

from which we easily deduce (2.8), (2.9) and (2.10).

3.2 Proof of the upper bound in Theorem 2.2

This section is devoted to the establishing of the upper bound (ii) in Theorem 2.2.

Proposition 3.1. There exists a set Ω′ ∈ A of full probability such that for all (u, v) ∈ Lp(O,R3) ×
V0(O,R3) and all ω ∈ Ω′ there exists a sequence (uε(ω))ε>0 in Lp(O,R3) satisfying

uε(ω) ⇀⇀ (u, v)
E0(u, v) ≥ lim sup

ε→0
Eε(ω, uε(ω)).

Proof. For any sequence (uε(ω))ε>0 satsifying uε(ω) ⇀⇀ (u, v), the limit

lim
ε→0

ˆ
O
Lε.ue(ω) dx =


ˆ
O
L.u dx+

ˆ
bO lv dx̂ when b = γ,ˆ

O
L.u dx when b < γ,

is easy to establish and left to the reader. Therefore we are reduced to the prove

uε(ω) ⇀⇀ (u, v)
H0(u, v) ≥ lim sup

ε→0
Hε(ω, uε(ω)).

for a suitable sequence (uε(ω))ε>0. We proceed into three steps.

Step 1. We assume (u, v) ∈ C1
c (Ô,R3)×

(
C1(O,R3)∩ V0(O,R3)

)
and we show that there exists a set

Ω′ of full probability and, for all ω ∈ Ω′, a sequence (uε(ω))ε>0 in Lp(O,R3) such that uε(ω) ⇀⇀ (u, v)
and

lim
ε→0

Fε(ω, uε(ω)) =
ˆ
Ô
f0(u) dx̂

lim
ε→0

Gε(ω, uε(ω)) = G0(v).

Let η ∈ Q+ intended to go to 0 and let (Q̂i,η)i∈Iη be a finite family of pairwise disjoint cubes of size
η included in Ô, such that ∣∣∣∣∣∣Ô \

⋃
i∈Iη

Q̂i,η

∣∣∣∣∣∣ = 0.

Let zη :=
∑
i∈Iη

u(x̂i,η)1Q̂i,η where xi,η is arbitrarily chosen in Q̂i,η. Since u is a Lipschitz function on Ô,

clearly zη → u in Lp(O,R3) when η → 0.

For every i ∈ Iη, and for fixed n ∈ N∗, consider wi,n(ω, .) ∈ admnŶ (ω, u(x̂i,η)) and ξi,n(ω, .) ∈
C∞c (nŶ \D(ω)) such that

ˆ
nŶ \D(ω)

f∞,p(∇wi,n(ω, x̂), ξi,n(ω, x̂)) dx̂ = inf
{ˆ

nŶ

f̂∞,p(∇w) dy : w ∈ admnŶ (ω, u(x̂i,η))
}
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and extend it on R2 as follows:

w̃i,n(ω, x̂) = wi,n(τzω, x̂− z) if x ∈ Ŷ + z, z ∈ nZ2;

ξ̃i,n(ω, x̂) = ξi,n(τzω, x̂− z) if x ∈ Ŷ + z, z ∈ nZ2.

It is easy to check that w̃i,n and ξ̃i,n satisfies: w̃i,n(ω, x̂+z) = w̃i,n(τzω, x̂) and ξ̃i,n(ω, x̂+z) = ξ̃i,n(τzω, x̂)
for all z ∈ nZ. To shorten notation, we sometime drop the dependance on η and we still denote by wi,n
and ξi,n these two functions. According to Proposition 2.2, we have, almost surely when ε→ 0

f∞,p(∇wi,n(ω,
x̂

ε
), ξi,n(ω,

x̂

ε
)) ∗

⇀ E
 
nŶ

f∞,p(∇wi,n(ω, x̂), ξi,n(ω, x̂)) dx̂

= E
S(0,n)2(ω, u(x̂i,η))

n2
, (3.6)

and
wi,n(ω,

.

ε
) ⇀ E

 
nŶ

wi,n(ω, y) dy = u(x̂i,η). (3.7)

Let (θi,δ)i∈Iη be a partition of unity associated with (Q̂i,η)i∈Iη with θi,δ → 1Qi,η when δ → 0 (we omit
the dependance on η), and consider the following function in W 1,p(O,R3):

uδ,n,ε(ω, x) =
1
θ
εγv +

∑
i∈Iη

θi,δ(x̂)
[
wi,n(ω,

x̂

ε
) + εp−1x3ξi,n(ω,

x̂

ε
)
]
.

Clearly uδ,n,ε =
1
θ
εγv on O ∩ T (ε), and

limδ→0 limε→0 uδ,n,ε(ω, .) = zη weakly in Lp(O,R3)
limε→0 ε

−γa(ω, .ε )uδ,n,ε(ω, .) = v weakly in Lp(O,R3). (3.8)

Let Ω0 be the set of full probability made up of all ω ∈ Ω for which a(ω, .ε ) ⇀ θ for the σ( L∞(O), L1(O))
topology and denote by Ωi,η,n the set of full probability made up of all ω ∈ Ω for which (3.6) and (3.7)
hold. In what follows we denote the set of full probability

⋂
n∈N∗

⋂
η∈Q+

⋂
i∈Iη Ωi,η,n ∩ Ω0 by Ω′ and we

fix ω ∈ Ω′.

Now we are going to estimate Fε(ω, uδ,n,ε(ω, .)) and Gε(ω, un,δ,ε(ω, .)). For shortened notation we do
not indicate the dependance on ω. On O \ Tε we have

ε∇̂uδ,n,ε(x) =
1
θ
εγ+1∇̂v(x) +

∑
i∈Iη

θi,δ(x̂)
[
∇̂wi,n(ω,

x̂

ε
) + εp−1x3∇̂ξi,n(ω,

x̂

ε
)
]

+
∑
i∈Iη

ε∇̂θi,δ(x̂)
[
wi,n(ω,

x̂

ε
) + εp−1x3ξi,n(ω,

x̂

ε
)
]

= O(ε) +
∑
i∈Iη

θi,δ(x̂)∇̂wi,n(ω,
x̂

ε
)

and

ε1−p ∂uδ,n,ε
∂x3

(x) =
1
θ
εγ+1−p ∂v

∂x3
(x) +

∑
i∈Iη

θi,δ(x̂)ξi,n(ω,
x̂

ε
)

= O(ε) +
∑
i∈Iη

θi,δ(x̂)ξi,n(ω,
x̂

ε
)
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where O(ε) may depend on η, n, and δ. Consequently from (2.3), (2.5), (3.6)

lim
ε→0

Fε(ω, uδ,n,ε) = lim
ε→0

εp
ˆ
O\Tε(ω)

f(∇̂uδ,n,ε, ε−p
∂uδ,n,ε
∂x3

) dx

= lim
ε→0

ˆ
O\Tε(ω)

f∞,p(ε∇̂uδ,n,ε, ε1−p ∂uδ,n,ε
∂x3

) dx

= lim
ε→0

∑
i∈Iη

ˆ
Q̂i,η

θpi,δf
∞,p(∇̂wi,n(ω,

x̂

ε
), ξi,n(

x̂

ε
)) dx̂

=
∑
i∈Iη

ˆ
Q̂i,η

θpi,δE
S(0,n)2(ω, u(x̂i,η))

n2
dx̂.

Thus, according to Theorem 2.1

lim
δ→0

lim
n→∞

lim
ε→0

Fε(ω, uδ,n,ε) =
∑
i∈Iη

|Q̂i,η|f0(u(x̂i,η))

=
ˆ
O
f0(zη) dx̂.

Finally, letting η → 0, we infer

lim
η→0

lim
δ→0

lim
n→∞

lim
ε→0

Fε(ω, uδ,n,ε) =
ˆ
O
f0(u) dx. (3.9)

The same kind of computation gives (recall that γ = p−1+ a
p and that g∞,p is positively homogeneous

of degree p)

lim
ε→0

Gε(ω, uδ,n,ε) = lim
ε→0

εp−a
ˆ
O∩Tε

g(εγ
1
θ
∇̂v, εγ−p 1

θ

∂v

∂x3
) dx

= lim
ε→0

ˆ
O∩Tε

g∞,p(εp
1
θ
∇̂v, 1

θ

∂v

∂x3
) dx

= θ

ˆ
O
g∞,p(0,

1
θ

∂v

∂x3
) dx = G0(v). (3.10)

Combining (3.8), (3.9), (3.10) and a standard diagonalization argument1 furnishes a map ε 7→ (η(ε), δ(ε), n(ε))
such that

uε(ω, .) := uη(ε),δ(ε),n(ε),ε(ω, .) ⇀⇀ (u, v)

lim
ε→0

Hε(ω, uε(ω, .)) =
ˆ
Ô
f0(u(x̂)) dx̂+G0(v).

which completes the proof of step 1.

Step 2. We fix (u, v) ∈ Lp(O,R3) × V0(O,R3) with v ∈ C1(O,R3) and we show that for all ω ∈ Ω′′

there exists (uε(ω))ε>0 in Lp(O,R3) such that uε(ω) ⇀⇀ (u, v) and lim
ε→0

Hε(ω, uε(ω)) = H0(u, v).

Consider un ∈ C1
c (Ô,R3) weakly converging toward u in  Lp(Ô,R3) such that

lim
n→+∞

ˆ
Ô
f0(un) dx̂ =

ˆ
Ô
f0(u) dx̂.

Thus according to step 1, there exists uε,n(ω, .) weakly converging to un when ε→ 0 and

lim
n→n

lim
ε→0

Hε(ω, uε,n(ω, .)) =
ˆ
Ô
f0(u(x̂)) dx̂+G0(v).

1One can easily check that uη,δ,n,ε(ω, .) and ε−γa(ω, .
ε
)uη,δ,n,ε belongs to a fixed ball B(0, r) of Lp(O, R3). Since the

weak topology of Lp(O, R3) induces a metric on bounded sets, the diagonalization argument holds.
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We conclude by a diagonalization argument.

Step 3. For any (u, v) ∈ Lp(O,R3)×V0(O,R3) we show that for all ω ∈ Ω′′ there exists (uε(ω))ε>0 in
Lp(O,R3) such that uε(ω) ⇀⇀ (u, v) and lim

ε→0
Hε(ω, uε(ω)) = H0(u, v).

let v ∈ V0(O,R3). According to standard relaxation results, there exists a sequence (ζn)n∈N in C1
c (O)

weakly converging to
∂v

∂x3
in Lp(O,R3) such that

lim
n→+∞

ˆ
O

(g∞,p)⊥(
1
θ
ζn) =

ˆ
O

(g∞,p)⊥(
1
θ

∂v

∂x3
)dx. (3.11)

For all x ∈ O set

vn(x) :=
ˆ x3

0

ζn(x̂, s) ds.

Then vn ∈ V0(O,R3) ∩ C1(O), vn ⇀ u in Lp(O,R3) and

lim
n→+∞

θ

ˆ
O

(g∞,p)⊥(
1
θ

∂vn
∂x3

) = G0(v).

We end the proof by using Step 2 and a diagonalization argument.

3.3 Proof of the lower bound in Theorem 2.2

This section is devoted to the establishing of the lower bound (i) of Theorem 2.2.

Proposition 3.2. For all sequence (uε)ε>0 such that uε ⇀⇀ (u, v) one has

E0(u, v) ≤ lim inf
ε→0

Eε(ω, uε) (3.12)

for P a. s. ω ∈ Ω.

Proof. One may assume lim inf
ε→0

Eε(ω, uε) < +∞ otherwise there is nothing to prove. It suffices to show
that for P a.s. ω in Ω,

F0(v) ≤ lim inf
ε→0

Fε(ω, uε) (3.13)

G0(u) ≤ lim inf
ε→0

Gε(ω, uε). (3.14)

Indeed, according to Lemma 2.1, we easily infer

lim
ε→0

ˆ
O
Lε.ue(ω) dx =


ˆ
O
L.u dx+

ˆ
bO l.v dx̂ when b = γ,ˆ

O
L.u dx when b < γ,

Proof of (3.13). Note that since supε>0Eε(ω, uε) < +∞, from (3.5), we infer that there exists a
constante C such that

εp
ˆ
O∩Tε

∣∣∣∇̂uε∣∣∣p dx < Cεa, (3.15)

ˆ
O∩Tε

∣∣∣∣∂uε∂x3

∣∣∣∣p < Cεpγ . (3.16)

On the other hand, according to the compactness lemma, Lemma 2.1, one has for a subsequence
1O∩Tεuε → 0 in Lp(O,R3) so that,

1O\Tεuε = uε − 1O∩Tεuε ⇀ u in Lp(O,R3). (3.17)
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We will make use of (3.17) in the last step of the proof.

From (2.3), the coercivity condition satisfied by f and g, and from (3.15), (3.15), it is easily seen that

lim inf
ε→0

εp
ˆ
O\Tε

f(∇̂uε,
1
εp
∂uε
∂x3

)dx = lim inf
ε→0

ˆ
O
εpf(∇̂uε,

1
εp
∂uε
∂x3

)dx

≥ lim inf
ε→0

ˆ
O
f̂∞,p(ε∇̂uε)dx

Fix x0 in O and set Qρ(x0) := Sρ(x̂0) × Iρ(x0,3) (to shorten notation we sometimes do not indicate
the fixed argument x0). By using a blow up argument, for proving 3.13, it is enough to establish that for
a.e. x0 in O,

lim
ρ→0

lim inf
ε→0

 
Qρ(x0)

f̂∞,p(ε∇uε) dx ≥ f∗∗0 (u(x0)). (3.18)

Let 0 < δ < 1 intended to go to 1 and set (Tε)δ = εDδ(ω)× (0, 1) where Dδ(ω) =
⋃
i∈N(ωi + B̂δ d2

(0). Let

denote by Â 7→ SÂ(ω, s, δ) the subadditive process introduced in Section 2.3 where D(ωi) is replaced by
the disk Dδ(ωi) := ωi + B̂δ d2

(0) and denote by AdmÂ(ω, s, δ) the associated admissible set. Denoting by
Cε,ρ be the smallest cube in I containing 1

εSρ, our strategy consists in suitably changing the function uε
in order to obtain a function zε whose mean

ffl
Iρ
z(x̂, x3) dx3 belongs to AdmCε,ρ(ω, u(x0), δ) and whose

gradient decreases the left hand side of (3.18). In the four steps below, to shorten notation, we do not
indicate the dependance on ρ for the various Sobolev functions.

First change. By using a standard truncation argument, we modify uε into a Sobolev function
satisfying uε,δ = 0 in (Tε)δ and

 
Qρ

1Qρ\Tεf
∞,p(ε∇uε) dx ≥

 
Qρ

f∞,p(ε∇uε,δ) dx− C
ε

(1− δ)p
(3.19)

Indeed, consider ϕ in C1
c (Sρ) satisfying ϕ = 0 in εDδ, ϕ = 1 in Sρ \ εD and |∇ϕ|∞ ≤ 1

ε(1−δ) and set

uε,δ = ϕuε.

According to the growth conditions satisfied by f∞,p we infer
ˆ
Qρ

f̂∞,p(ε∇̂uε,δ) dx̂ =
ˆ
Qρ\Tε

f̂∞,p(ε∇̂uε) dx̂+
ˆ

(Tε\(Tε)δ)∩Qρ
f̂∞,p(ε∇̂uε,δ) dx̂

≤
ˆ
Qρ

f̂∞,p(ε∇̂uε) dx̂+ β

ˆ
(Tε\(Tε)δ)∩Qρ

εp
∣∣∣∇̂uε∣∣∣p dx̂

+β
1

(1− δ)p

ˆ
(Tε\(Tε)δ)∩Qρ

|uε|p dx̂

so that, from the Poincaré inequality and (3.15), (3.16), we infer
ˆ
Qρ

εpf̂∞,p(∇̂uε,δ) dx̂ ≤
ˆ
Qρ

εpf̂∞,p(∇̂uε) dx̂+ β

[
εpγ

(1− δ)p
+ εa

]
which proves (3.19).

Second change. By using a standard De Giorgi slicing argument (see for instance [4], proof of Propo-
sition 11.2.3), there exists η(ε)→ 0+, η(ε) > ε, a η(ε)-neighbohrood V η(ε) ⊂ Qρ of ∂Qρ, and a Sobolev
function ũε,δ vanishing on ∂Sρ × Iρ, equal to uε,δ in a Qρ \ V η(ε), satisfying

 
Qρ

f∞,p(ε∇̂uε,δ) dx ≥
 
Qρ

f∞,p(ε∇̂ũε,δ) dx−
C(ρ)
ν
− rε(ρ) (3.20)
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where C(ρ) is a positive constant depending only on ρ, limε→0 rε(ρ) = 0 and ν ∈ N is the number of
bands slicing V η(ε) and intended to go to +∞. It is worth noticing that ũε,δ remains equal to 0 in (Tε)δ
since it is of the form ϕη(ε)uε,δ for a suitable truncation function ϕη(ε).

Third change. We modify ũε,δ into a Sobolev function wε,δ satisfying

wε,δ = 0 in (Tε)δ, wε,δ = 0 on ∂Qρ,

 
Qρ

wε,δ = u(x0)

and  
Qρ

f∞,p(ε∇̂ũε,δ) dx ≥
 
Qρ

f∞,p(ε∇̂wε,δ) dx− C

∣∣∣∣∣u(x0)−
 
Qρ

1Qρ\(Tε)δ ũε,δ dy

∣∣∣∣∣
p

. (3.21)

Indeed, set

wε,δ = ũε,δ +
ψffl

Qρ
ψ dx

(
u(x0)−

 
Qρ

1Qρ\(Tε)δ ũε,δ dy
)

where ψ ∈ C1
c (Qρ) satisfies ψ = 0 in Tε, ψ = 0 on ∂Qρ, |∇ψ|∞ ≤ C

ε and |ψ|∞ ≤ C .

Last step. Collecting (3.19), (3.20) and (3.21) we finally obtain

 
Qρ

f∞,p(ε∇̂uε) dx ≥
 
Qρ

f∞,p(ε∇̂wε,δ) dx− C
ε

(1− δ)p
− C(ρ)

ν
− rε(ρ)

−C

∣∣∣∣∣u(x0)−
 
Qρ

1Qρ\(Tε)δ ũε,δ dy

∣∣∣∣∣
p

.

Set zε,δ(y) := wε,δ(εy). A change of scale then yields
 
Qρ

f∞,p(ε∇̂uε) dx ≥
 

1
εQρ

f∞,p(∇̂zε,δ) dx− C
ε

(1− δ)p
− C(ρ)

ν
− rε(ρ)

−C

∣∣∣∣∣u(x0)−
 
Qρ

1Qρ\(Tε)δ ũε,δ dy

∣∣∣∣∣
p

.

Extend zε,δ by 0 in R3 \ 1
εSρ. Then the function z̃ε,δ defined by

z̃ε,δ(x̂) :=
|Cε,ρ|∣∣ 1
εSρ

∣∣  
Iρ

zε,δ(x̂, x3) dx3

clearly belongs to AdmCε,ρ(ω, u(x0), δ). Therefore, according to Jensen’s inequality and from the p-
homogeneity of f∞,p

 
Qρ

f∞,p(ε∇̂uε) dx ≥
( |Cε,ρ|∣∣ 1

εSρ
∣∣ )pSCε,ρ(ω, u(x0), δ)

|Cε,ρ|
− C ε

(1− δ)p
− C(ρ)

ν
− rε(ρ)

−C

∣∣∣∣∣u(x0)−
 
Qρ

1Qρ\(Tε)δ ũε,δ dy

∣∣∣∣∣
p

. (3.22)

It is easily seen that from (3.17) and the Lebesgue point Theorem, for a.e. x0 in O one has

lim
ρ→0

lim
δ→1

lim
ε→0

∣∣∣∣∣u(x0)−
 
Qρ

1Qρ\(Tε)δ ũε,δ dy

∣∣∣∣∣
p

= 0.

Moreover limε→0
|Cε,ρ|
| 1εSρ|

= 1. On the other hand, according to Theorem 2.1, Theorem 5.2 and Section 6.2

of [18], for P-almost every ω ∈ Ω and for every ρ > 0 one has

lim
δ→1

lim
ε→0

SCε,ρ(ω, u(x0), δ)
|Cε,ρ|

= lim
ε→0

SCε,ρ(ω, u(x0))
|Cε,ρ|

= f0(u(x0)). (3.23)
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Then, letting successively ε→ 0, δ → 1, ν →∞ and ρ→ 0 in (3.22), we obtain for P-almost every ω ∈ Ω
and for almost every x0 ∈ O,

lim inf
ε→0

 
Qρ

f∞,p(ε∇uε) dx ≥ f0(u(x0))

which ends the proof.

Proof of (3.14). Fix ω in the set Ω” of full probability given in Proposition 2.2 and assume that
lim inf
ε→0

Gε(uε) < +∞. According to the Moreau-Rockafellar duality principle we infer that for all φ in

Lq(O):

lim inf
ε→0

Gε(uε) = lim inf
ε→0

εp−a
ˆ
O
a(ω,

x̂

ε
)g∞,p(∇̂uε,

1
εp
∂uε
∂x

)dx

≥ lim inf
ε→0

ˆ
O
a(ω,

x̂

ε
)(g∞,p)⊥(ε−γ

∂uε
∂x3

)dx

≥ lim inf
ε→0

( ˆ
O
a(ω,

x̂

ε
)φ.ε−γ

∂uε
∂x3

dx−
ˆ
O
a(ω,

x̂

ε
)(g∞,p)⊥,∗(φ)dx

)
=

ˆ
O
φ.
∂v

∂x3
dx− θ

ˆ
O

(g∞,p)⊥,∗(φ)dx

= θ

[ˆ
O

1
θ
φ
∂v

∂x3
dx−

ˆ
O

(g∞,p)⊥,∗(φ)dx
]
.

By taking the the supremum over all functions φ in φ ∈ Lq(O,R3) we finally obtain

lim inf
ε→0

Gε(uε) ≥ θ sup
φ∈Lq(O)

[ˆ
O

1
θ
φ
∂v

∂x3
dx−

ˆ
O

(g∞,p)⊥,∗(φ)dx
]

= θ

ˆ
O

(g∞,p)⊥(
1
θ

∂v

∂x3
)dx = θ1−p

ˆ
O

(g∞,p)⊥(
∂v

∂x3
)dx

which completes the proof.

3.4 Proof of Corollary 2.1

Apply the variational property of the convergence established in Theorem 2.2, then compute the Euler
equation associated with the minimization problem min

{
E0(u, v) : (u, v) ∈ Lp(O,R3)× V0(O,R3)

}
to

obtain: 

∂f0(u(x̂)) 3
ˆ 1

0

L(x̂, s) ds,

− ∂

∂x3

(dg∞,p)⊥
ds

(
∂v

∂x3
)
)

= 0 in O,

v(x̂, 0) = 0 on Ô,

D(g∞,p)⊥( ∂v∂x3
).e3 = θp−1 l̃ on Ô + e3.

To end the proof it suffices to apply the subdifferential rule:

a∗ ∈ ∂f0(a) ⇐⇒ a ∈ ∂f∗0 (a∗).

3.5 Computation of u when f = 1
2
|.|2

In this section we establish the expression of u when f = 1
2 |.|

2. With the notation of Corollary 2.1 we
have:
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Proposition 3.3. Let denote by Un(ω, .) the unique solution of the scalar random Dirichlet problem{
−∆U = 1 in nŶ \D(ω),
U ∈W 1,2

0 (nŶ \D(ω)),

and set Λn(ω) :=
ffl
nŶ

Un(ω, x̂) dx̂. Then for P a.e. ω ∈ Ω, Λn(ω) converges to a deterministic value
Λ > 0 and u is uniquely determined by the formula

u(x̂) =
Λ
2

ˆ 1

0

L(x̂, t) dt. (3.24)

Proof. Consider the Lagrange multiplier λs,n(ω) ∈ R3 of the optimization problem

fn(ω, s) := inf
{

1
2

 
nŶ

|∇w|2 dx̂ : w ∈W 1,2
0 (nŶ \D(ω),R3),

 
nŶ

w dx̂ = s

}
,

whose (random) minimizer ws satisfies

−∆ws = λs,n(ω) in nŶ \D(ω),

ws ∈W 1,2
0 (nŶ \D(ω),R3),

 
nŶ

ws dx̂ = s.

(3.25)

Let denote by B = (e1, e2, e3) the canonical basis of R3. Applying (3.25) for s = ei we deduce fn(ω, ei) =
1
2λ

ei,n(ω).ei. Then, applying (3.25) for s = ei + ej and s = ei − ej , and noticing that λei±ej ,n(ω) =
λei,n(ω)± λej ,n(ω), we easily infer

1
4
[
fn(ω, ei + ej)− fn(ω, ei − ej)

]
=

1
2
[
λei,n(ω).ej + λej ,n(ω).ei

]
.

The same calculation holds when replacing ei and ej by any vector u and v. This proves that fn(ω, .) is
a quadratic form (note that fn(ω, .) is homogeneous of degree 2), and that fn(ω, s) = An(ω)s . s where
An(ω) is a symetrical 3× 3 matrix given by

Anij(ω) =
1
2
[
λei,n(ω).ej + λej ,n(ω).ei

]
.

Applying (3.25) with s = ei and taking wej as a test function and, symetrically with s = ej and taking
wei as a test function, we deduce λei,n(ω).ej = λej ,n(ω).ei, so that Anij(ω) = λei,n(ω).ej . But, for i 6= j,
from (3.25), we infer that wei .ej satisfies the problem

−∆wei .ej = λei,n(ω).ej in nŶ \D(ω),

wei .ej ∈W 1,2
0 (nŶ \D(ω)),

 
nŶ

wei .ej dx̂ = 0.

from which we deduce wei .ej = 0 (take wei .ej as a test function), thus Anij(ω) := λei,n(ω).ej = 0 for
i 6= j.
Let us compute Anii(ω) = λei,n(ω).ei. Since λei,n(ω).ei = 2fn(ω, ei), one has λei,n(ω).ei ≥ 2α > 0 and

from (3.25), we infer that
wei .ei

λei,n(ω).ei
solves the scalar Dirichlet problem

 −∆U = 1 in nŶ \D(ω),

U ∈W 1,2
0 (nŶ \D(ω)).
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Let us denote by Un(ω) its unique solution, then

Anii(ω) =
1ffl

nŶ
Un(ω) dx̂

.

By using once again the subadditive ergodic theorem one can prove that Λn(ω) :=
ffl
nŶ

Un(ω) dx̂(ω)
almost surely converges to a deterministic value Λ > 0 (see [10]). Consequently, for P- a.e. ω ∈ Ω and
for all s ∈ R3,

lim
n→+∞

fn(ω, s) = f0(s) =
1
Λ
s.s

and ∂f0(s) = 2
Λs. The conclusion follows from ∂f∗0 (s) = Λ

2 s.

3.6 Numerical result

We would like to compute an approximation Λn(ω) of the constant Λ determined in the preceding section.
For this we make use of the cast3M program to solve the scalar random Dirichlet problem{

−∆U = 1 in nŶ \D(ω),
U ∈W 1,2

0 (nŶ \D(ω)),

in the geometrical situation of the random chessboard-like described in Example 2.1 with Ω0 made up
of 9 points. The first part of the program consists in constructing the random mesh associated with
nŶ \D(ω) (Fig (2)). The sections of the fibers are randomly placed following 9 different places in each
cell.

Figure 3 represents the evolution of n 7→ Λn(ω) for various realizations ω (in case of equi-probability
αk = 1

9 ) when n increases. For each ω we can see that the value of Λn(ω) converges to the same constant
Λ. This illustrates ergodicity. We also compare the various results obtained by varying the probability
presence α0 of the section of the periodic case with the value Λn of the periodic case (the curve in red)
in Figure 4. Figure 5 represents the evolution of Λn(ω) when the radius of the sections increases.
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Figure 2: A ”chessboard-like” random mesh (n=8).
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Figure 3: The curves n 7→ Λn(ω) for various realizations ω with equi-probability presence αk = 1
9 ,

k=1,. . . , 9.
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Figure 4: Decreasing of the curves n 7→ Λn(ω) for one realization ω when the probability presence α0

increases towards 1.
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Figure 5: The curves n 7→ Λn(ω) when the radius d
2 of the sections increases from 0.2 cm to 0.8 cm with

a step 0.04
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