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CONVERGENCE AND STOCHASTIC HOMOGENIZATION OF A CLASS OF TWO
COMPONENTS NONLINEAR REACTION-DIFFUSION SYSTEMS

OMAR ANZA HAFSA, JEAN PHILIPPE MANDALLENA AND GERARD MICHAILLE

ABSTRACT. We establish a convergence theorem for a class of two components nonlinear reaction-
diffusion systems. Each diffusion term is the subdifferential of a convex functional of the calculus of
variations whose class is equipped with the Mosco-convergence. The reaction terms are not globally
Lipschitz with respect to the two state variables and give rise to a pair of bounded solutions, and
positive in the modeling of ecosystems. As a consequence we prove two homogenization theorems for
this class under a stochastic homogenization framework. As an application, we treat the stochastic
homogenization of a prey-predator model with saturation effect.

1. INTRODUCTION

We are concerned with the convergence of sequences of reaction-diffusion systems of the type

%ﬂ (t) + 0P1pn (un (1) 3 Fipn (t,un (t) v, (t) for ae. t e (0,T)

(Sn) %" (t) + 0Bs, (U0 (1)) D Fo (ttn (£) v (£)) for ace. t € (0,T)

Py, < Un (0) <Pin: Lo, < v (0) £ Py s un (0) € dom (9D1,), vn (0) € dom (89P2,),

for suitable 2. and p; ,, depending on F; ,,. Problems (S,) model various situations involving competition
or symbiosis fnodels, prey predator models in ecology, as well as heat mass transfert in chemical reactors
and combustion theory, or gaz-liquid interactions problems, neurophysiology, etc (see Examples 2.1, 2.2,
2.3, 2.4), and 2.5). As in [1], each diffusion term is the subdifferential of a convex integral functional
®; ,: L2 (Q) - RU{+00}, i = 1,2, whose domain contains the boundary conditions. Therefore, in their
domain, the diffusion terms are of divergence form —divDW1 ,, (z, Vu) and —divD:Ws ,, (2, Vv), where
the explicit dependence on the spatial variable reflects the fact that the general direction of movement
may take place in heterogeneous media. They also may depend on some small or large parameter, as
well as the reaction terms, that we formally denote by n. For instance, we write n for €, where ¢, is a
small parameter intended to tend toward 0, associated with the size of small spatial discontinuities or
the size of a mosaic of small habitat in patch dynamic approach to non homogeneous ecosystem of two
species. The reaction functionals are such that for fixed v € L% (Q), (t,u) = F, 1 (t,u,v), and for fixed
u € L%(Q), (t,v) = F,2(t,u,v) are SV-Reaction functionals as defined in [1]. As a consequence, (S,,)
admits a pair of bounded solutions, and, in some cases, as for example in the modeling of ecosystems
in 2.1, 2.2, and 2.3, a pair of positive solutions. It should be noted that our study includes systems
(Sy) coupling a reaction-diffusion equation (r.d.e.) and a non diffusive reaction equation (o.d.e.), as the
FitzHugh-Nagumo system in Example 2.5 (take ®; = 0 or ®3 = 0).

In Section 2, for any T" > 0, we prove existence and uniqueness of bounded strong solutions in
C ([0, T, L () x C ([0,T],L? (2)) for problems of the type (S,), when initial functions are bounded
according to the reaction functionals. The proof is based on [1, Corollary 3.1] together with a suitable
fixed point procedure. In Section 3, under the hypotheses of the Mosco-convergence of functionals ®; ,,,
and a suitable convergence of F; ,, to Fj, i = 1,2, we establish the first main result of the paper, Theorem
3.1), which states the convergence of (S,) toward a reaction-diffusion system (S), and can be seen as a
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stability result for the class of systems considered. The convergence of systems (S,,) coupling a reaction-
diffusion equation and a non diffusive reaction equation requires an additional regularity conditions of
the latter, and is discussed in Theorem 4.1.

In Section 5, we take up the general framework of stochastic homogenization described in [1]. The
main results are stated in Theorems 5.1, 5.2, and illustrated through the homogenization of a prey-
predator model with a saturation effect, involving two species spreading in an heterogeneous environment,
whose small spatial heterogeneities are distributed at random following a Poisson point process. The
homogenized problem illustrates the interplay between the growth rate of the prey and the maximum
carrying capacity of the environment when the size of the spatial heterogeneities is very small.

2. TWO COMPONENTS REACTION DIFFUSION SYSTEM ASSOCIATED WITH CONVEX FUNCTIONALS OF
THE CALCULUS OF VARIATION AND SPECIAL REACTION FUNCTIONALS

We denote by £V the Lebesgue measure in RV, by Q a domain of RV of class C', and by I' a subset
of its boundary 9 with positive #~ ~!-Hausdorf measure. To shorten the notation, we sometimes write
X to denote the Hilbert space L? (Q) equipped with its standard scalar product and its associated norm,
denoted by (-,-) and || - || x respectively. All along the paper we use the same notation | - | to denote the
norms of the euclidean spaces R?, d > 1, and by ¢ - ¢ the standard scalar product of two elements &, &’
in R?. We also denote by ¢ ® ¢ the Hadamard (or Schur) product of two elements ¢ and ¢ in RY. For
any topological space T, we denote by B (T) its Borel field.

The paper is concerned with sequences of systems of reaction-diffusion Cauchy problems of the form

CC%L (t) +0P1 (u(t)) > Fy (t,u(t),v(t)) for ae. t € (0,7T)

(S) % (t) + 0Po (v () 2 Fo (t,u(t),v(t)) for a.e. t € (0,T)

u (0) € dom (0®4), v (0) € dom 0P,

where, for ¢ = 1,2, 0®; denote the subdifferential of standard convex functionals ®; of the calculus of
variation. More precisely

®,: L*(Q) - RU{+o0}
is defined by

1
/ W, (z,Vu(x)) dx + f/ ozo,iuz dHn_1 — / oudHy_1 ifue HH(Q),
®; (u) = Ja 2 Jaoa 20
400 otherwise

where @; € L%N_l (09), o € LY, (0R2) with ag; > 0 Hy_1 a.e. in 9Q, and ag; > 0; on I'; C 9N
with Hy_1 (I';) > 0 for some o; > 0 L. The density W; : RY x RY — R is a measurable function which
fulfills the following conditions:

- there exists & > 0 and 8 > 0 such that for a.e. z € RV and all ¢ € RN, af¢]2 < W; (z,¢6) <

B (1+1€P),
- for a.e. x € RN, £ Wi (z,€) is a differentiable? and convex function,
- VVz (l‘,O) = Dng (m,O) =0.
By using the subdifferential inequality together with the growth conditions fulfilled by the convex

function & — W; (z,€), it is easy to show that there exists nonnegative constants L () and C (8) such
that, for all (£,¢') € RN x RN,

(Wi (2,8) = Wi (z, )| < L(B) 1€ =& (A + [l +1€])
[DeW (2,8) | < C(B) (1 + [£]) -

From the second estimate, we infer that if u € H* (), then the function De¢W; (-, V) belongs to L2 ().
1n the two last integral, we still denote by u the trace of u.

2Under this hypothesis the subdifferential of ®; is single valued. We make this hypothesis in order to simplify the
notation but we could use the subdifferentiability of the convex functional ®;, without additional difficulties.
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We recall (see [1, Lemma 1]) that the subdifferential of the functional ®; (actually its Gateau deriva-
tive), whose domain captures the boundary condition, is given by:

dom (A4;) = {v € H* () : div D¢W; (-, Vv) € L*(Q), apv+ DeW; (-, Vv) -1 = ¢; on 0Q}

A; (v) = —div DeW (-, Vo) for v € dom (4;)
where o ;v + DeW; (-, Vo) - 7 must be taken in the trace sense.

The pair (Fy, Fy) of reaction functionals belongs to a suitable class for which a comparison principle
holds with respect to the initial and boundary datas for lower and upper solutions. This class is defined
in the next section.

2.1. The class of Two Components Separated Variable Reaction functionals. The two com-
ponents reaction-diffusion systems that model a wide class of applications in the domain of ecosystems,
giving rise to bounded solutions, and for which the mathematical treatment of homogenization (periodic
or stochastic) is possible, involve a special class of pairs of reaction functionals that we define below.

Definition 2.1. A pair (Fy, Fy) of functionals F; : [0, 4+00) x L2 (Q) x L% () — R i = 1,2, is called
Two Components Separated Variable Reaction functional (TCSVR~functional in short), if there exists
a pair (f1, f2) fi : [0,+00) x RN x R x R — R, of measurable functions , i = 1,2, such that for all
t € [0,+00) and all (u,v) € L? () x L? (),

{ Fy(tu,0) () = f1(tz,u(z),v(2)),
F (tvuvv) (:C) = f2 (taxvu(x) ,v(x)),

and fulfilling the following structure conditions®:

fl(t,ZC,C,CI):Tl(t,x)th(C/)'Ql( t,x
fot2,¢¢)=r2(t,x) ©h2 () 92 (') + a2 (t, 2
where
hi,gi : R = R! i =1,2, are locally Lipschitz continuous functions;
ri € L ([0, +00) x RN, R!);
¢ €L?(0,T,L7,, (RY)) for all T > 0.
Furthermore (f1, f2) must satisfy the following Two Components Comparison Principle condition
(TCCP): fori = 1,2, there exists a pair (L,?» of functions L,ﬁ : [0, 400) x R — R with L <0< f,,

and a pair (BN ﬁi) in R? with P, < Pi such that each of the two ordinary differential equations

v () = f, (t,gi (t)) for a.e.t € (0,+00)
(0) =p,

<3 L)

ODE; 7; ()
Pt yz 0

ODEZ{ ? (t,7; () for a.e.t € (0,00)

possesses at least a solution, such that for all T > 0, for a.e. (t,z) € (0,T) x RV,

(e
t

fl (tvxayl (t)acl) < fl ( ’
for all ¢" € [y, (T') .y, (T')] and,

f2 (taxa<7£2 (t)7) Z iz (
fa(t

for all ¢ € [gl (1), 5, (T)]-
The pair (fi, f2) is called a TCSVR-function associated with ((7‘1', Gis Qi)i:1,2>'

3Using the coordinates of 7i, gi and hj we have fi(t,2,{,{) = ZLzl rik (Bx)hik (C) g1k (Q) + qu (t,z) and
fo (t,2,8,0) = Xhq T2k (6,2) hax (Q) gak (T) + a2 (¢, 2)
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Remark 2.1. 1) Since Y, is non increasing, and ; is non decreasing, for any 7' > 0, and for i = 1,2 we
have

(1) <y, (0)=p, <p=7;(0) <7 (T).

Yi
2) It is worth noting that for each fixed (' in [y, (T') ¥, (T))], the function ¢ — fi(t,2,¢, (') is a
SVR-functional associated with (r1 © hy (¢'),g1,¢1) in the sense of [1]. Similarly for each fixed ¢ in
[% (T) g, (T)], the function ¢’ — f5 (t,x,(, (') is a SVR-functional associated with (ro ® hs (), g2, g2).

5SS

3) We will sometimes assume the following condition on r;, and ¢;: 7; : t — r;(¢,-) belongs to
Wt (0,7, L3, (RN, RY)) for all T > 0, i.e., for all T > 0, and all all bounded Borel set B of R, 7;
is absolutely continuous from [0, 7] into L? (B,R'); similarly, for all T > 0, ¢; : t > ¢; (t,-) belongs to
whi (0, T,L% . (]RN)), i.e. for all T > 0, and all all bounded Borel set B of RV ¢ is absolutely continuous
from [0, 7] into L? (B). These two conditions are unnecessary to assert existence of a bounded solution
to S, and will be invoked for proving the following additional property: the solution (u (t),v (t)) of S

belongs to dom (D®;) x dom (D®s) for all t € (0,7) and possesses a right derivative at each ¢t € [0,T).

2.2. Examples. In all examples below, for any scalar function a : [0, +00) x RN — R we use the notation
@ 1= SUP(; 1) [0,400) xRN @ (1, 7) and @ := inf(; 4)e(0, 100y xRN @ (¢, ).

Examples 2.1. Example derived from competition models in ecology.

AN C CI
fi(toa, ¢ (') = a1 (t,2) ¢ (1 T K ho) MK (t,x)>

AN 4 C/ g
f2 (taxa<7C)_ a2 (th)C (1 - K2 (tvx) —a271K2 (tﬂl’)) ’

where ¢; > 0 satisfies @; < 400, K; (t,2) >0, a12 > 0 and as; > 0.
Proposition 2.1. The pair (f1, f2) is @ TCSVR-function with for i =1, 2,
p,; any positif real number, g, (¢t) = p, exp (@;t) .
Proof . Clearly the functions f; satisfy the structure condition of TCSVR-functions with [ = 3 and
a; (t, ) o (t, ) . Z
% ta = i ta s T T p N0 Yiair1 1 a7 |0
r; (t,x) (a (t,x) K, (t.2) a; 77T K (t.2) 1+1€ 57
hy (C/) = (17 1a Cl) ) ha (C) = (17 1a C) s
g1 (C) = (<7C27C) )y 92 ((l) = (C/aCI27CI> .
Let us show that condition (I'CCP) is fulfilled. Take f, = 0, and p, = 0. Then y. = 0 and
f1 (t,x,yl (t),(’) =0>f, (t,gl (t)) for all ¢’ € R. Similarly fo (t7x,§,32 (t)) =0>f, (t7y2 (t)) for
all ¢ € R.

On the other hand take f, (t,{) = a1(, p; > 0 any real number, and f, (¢t,¢') = aa(’, p, > 0 any
real number. Then 7, (t) = p;exp (@i;t) and fi (t,2,7, (t),(') < @y, (1) = f1 (7, (1)) for all ¢ > 0.
Similarly fa (¢,2,(, 7y () < @¥s (t) = fo (8,75 (¢)) for all ¢ > 0, which proves the claim. !

The pair (fi, f2) is associated with the diffusive competition model between two species

du u(t) v (t)
T (t) + 0P1 (u(t)) 2 aq (t) u(t) (1 a0 ‘“’QW

SN W)+ 00, 0 (1) 2 00 (0 (1) (1 - K(?t) o 1?2(2)

) for a.e. t € (0,7T)

) for a.e. t € (0,T)

u (0) = up € dom (0P1), v (0) = vg € dom 0P,

where v and v denote the densities of two competing species having a logistic growth in the absence of the
other. The a’s are the linear birth rate and the K’s the carrying capacities. The dimensionless coefficients
a1,2 and ag,; measure the competing effect of v to u and u to v respectively. In Theorem 2.1 below, we

prove that () possesses a unique solution (u,v) € C ([0,T], L? (Q))2 for all T > 0, and that under the
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initial conditions 0 < wug < p;, 0 < wg < Py, then 0 < u (t) < p; exp (@1t), 0 < v (t) < pyexp (aqt) for all
t € [0, T]. Furthermore, if we assume that for all T > 0, the functions t — «; (t,-) and ¢ — Qi) belong

Ki(t)')
to Wit (O7 T, L? (]RN)), then w and v possess a right derivative at each ¢ € (0, 7).

loc

Examples 2.2. Example derived from symbiosis models in ecology.

AN C CI
fl(t,xaQC)—al(tvx)C(l_ )+b1’2K1(t,x)>

K1 (t,m
fa(t,z,(,¢") = (t,z) ¢ (1 — ¢ +b21 ¢ ,
KQ (tvx) ’ K2 (t7x)
where o; > 0, +00 > K; > K; (t,z) > K, > 0. We assume that
K K
0< b112 < =L and 0 < bg’l < ;2 (21)
K, Ko

Proposition 2.2. The pair (f1, f2) is a TCSVR-function with for i = 1,2,

{ 0; =0y, =0 N
_ K K, K, K> _
p1 =Py = max{51*b1,2?1 'K, ba1Ka }ayi = Pi-

Proof . Clearly the The functions f; satisfy the structure condition of TCSVR-functions with { = 3 and

_ Q5 (t,.’II) 7041' (t,l’) — Z
Ti(tyir)_ (az (t7x)7_1(i(t,x)7bi)i+1[(i(t7x)) <Z+1€2Z) s
hq (C/) = (171?C/)7 ha (C) = (LLC)a
g1 (C) = (<7<27<) , g2 (C/) == (C/,CIQ,CI) .

Let us show that condition (TTCCP) is fulfilled. As in the previous example, take L =0, and p,=0.
Then y, = 0 and f; (t,x, y, (1), g/) —0>/, (t, v, (t)) for all ¢’ € R. Similarly f (m, ¢y, (t)) =0>
£, (t,yQ (t)) for all ¢ € R.

Because of the signs positive preceding the b’s, we cannot proceed as in the previous example for
completing condition (TTCCP). We take f, = 0 and look for g, in the form of constants p; > 0. For all
¢" €[0,p,] we have

— P1 P2
<o (t,x 1—=+4+bjo—|. 2.2
< ai( )01( 7 1’2K1> (2.2)
Take p; and p, positive, satisfying
P1 P2
1— = 4+b1o—=<0. 2.3
T, Theg (2.3)

With this choice, from (2.2) and (2.3), we infer that for all {’ € [0, p,]

fl (taw7y1 (t) ) C/) <0= ?1 (t7yl (t)) :
Similarly, with p; and p, positive, satisfying

1 - % + bg,lﬁ <0, (2.4)
for all ¢ € [0,p,], we have
fa(t, 2,075 (1) 0= fy (t,7 (1)) -
Therefore, p, > 0 satisfying (2.3) and (2.4) for i = 1,2, are suitable for (T'CC'P) to be fulfilled. Choosing
D1 = Po, from (2.3), (2.4) and according to condition (2.1), we easily check that
K1F1 KQFZ
K, —b1oK; Ky —by 1Ko }

is suitable. I

=7 >
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The pair (f1, f2) is associated with the diffusive symbiosis model between two species

% (t) + 0%y (u(t)) 3 ar () u(t) (1 - Kul(’éz) b ;1%) for a.e. ¢ € (0,T)
() % (£) + 0% (v (1) 3 s (£) v (1) (1 _ ;2(2) +bas Iif;%) for ae. t € (0,T)
u (0) = up € dom (0P1), vp = vy € dom 0Py,

where v and v denote the densities of two species having a logistic growth in the absence of the other.
As in Example 2.1, the o’s denote the linear birth rate and the K’s, the carrying capacities. The
dimensionless coefficients b1 2 and by ; measure the symbiosis effect of v to u and u to v respectively. By
contrast with the competition model of two species described in the Example 2.1, the signs preceding
the b’s are positive and reflect the fact that the interaction between the two species is to the advantage
of all. Conditions (2.1) reflect the fact that symbiosis between both species must not be too large so
that both populations grow bounded. It should be noted that the stability analysis of the system, for
the model without diffusion and with constant carrying capacities, provides the more accurate condition
bi2ba1 < 1 (see [7, Section 3.6]). We prove in Theorem 2.1 that (S) possesses a unique solution
(u,v) € C([0,T],L? (Q))2 for all T' > 0 and that, under the initial conditions 0 < uy <5, 0 < vy < p,
then, 0 < u(t) < p, and 0 < v (t) < p for all ¢ € [0,T]. Furthermore, if we assume that for all T > 0,
the functions ¢ — «; (¢,-) and t — ;1((’;)) belong to W11 (0, T, leoc (RN)), then u and v possess a right
derivative at each t € (0,T).

Examples 2.3. Example derived from predator-prey models.

Pt ¢) = (00) (1= g5 ) (e 0¢ (1 exp (-b0)

!

f2 (taxa<7</) = Q2 (t,l‘) C/ (1 - ci) 9

where aq (t,2) > a7 > 0, +00 > ay > @z (t,x) > ay >0, K (t,z) > K >0, +o0 >a > a(t,x) > 0, and

.. oo
b, ¢ are positive constants. Furthermore we assume that A = c==2 > 4.
acp

Proposition 2.3. The pair (f1, f2) is a TCSVR-function with

1—y/1-4% 144/1-%
816 K 2 aK 2 7g1:B]_;

K 14 _
Py, =0, y,=0;

e | 2p, %) (1-2)] 7=p
2 cary 1’6*1 K » J2 2

Proof . Fix ¢ := p, >0 satisfying 0 < p, < K and chosen later. Set

f2 (taxa<7</) lfC > 1)
f2 (tvxaévé-/) lfC < 6.

At the end of the proof, we see that fa 5 = f2 for  and ¢’ in suitable intervals. The pair (f1, f2s) satisfies
the structure condition of TCSVR-functions with [ = 3: indeed take

r1(t,x) = <a1 (t,z), (‘);; ((tt’ff)) , —a (t, a:)) ,
hl (CI) = (17 17 gl) ;

g1 (C) = (Cv _C27 1- exXp (—b()) ;

f2,5 (tv'ra<7</) = {




CONVERGENCE OF TWO COMPONENTS NONLINEAR REACTION-DIFFUSION SYSTEMS 7

and
T2 (t,l’) = (0[2 (t,l’) , —CQg (t,if) ) 0) 3
1, %,0 if¢>6
h2,5 (C) = 1
175,0 if { <6,

92 (¢') = (¢, ¢%,0).
It remains to show that (f1, f2,s) fulfills condition (TCCP). First take p, = 0, f, - =0, then y, = p,
and fas (t, z,¢, Y, (t)) =0</f, s (t,y2 (t)) for all ¢ € R. To complete condition (T'CCP), we look for
P2 >0, p, and py with fo 5= f = f; =0, then 7, = py, y, = p,, and §; = p;. We first look for p,
satisfying

f2,5 (tax7<:’ﬁ2) S pQ (O{Q - Ca2p2>

P1
SO:f2(t752)a
for all ¢ € R, which furnishes the first condition:
Qg _
—0 < Ds. 2.6
cay P1 = P2 (2.6)

Secondly, we look for P, 0<p < K, satisfying
7 Bl !
f1 (t,x,£1,§)2a1 (t,sr:)gl - % —a(x,t)¢ (l—exp(—b&))

Bl —
>a1p1( —K>—ac >0

for all ¢’ € [0,7,]. This provides the following second condition

or equivalently

p1 < Ap, ( - K) . (2.8)

_ Qg _ Py
€ |25, _ L)
P2 [Cazpl a b ( Kﬂ

and

K K
Set p; = 0p, where § > = (recall that = > 1). Then (2.8) and the previous condition on ¢ are
o Py Py
equivalent to
£ geafi-4)
£y K
Then the choice of § and 0 < p, < K is governed by
1 _p p
<= (1=
<4 ( K) (2.9
and
be |2 a(1-4 (2.10)
) K N
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Since A > 4, condition (2.9) is fulfilled by any p, € [le/; 1+\/ } The choice of 0 is then
given by (2.10). It is easily checked that p, = Op, satisfies

fi(t,2,51,¢) S0 =fy (t,71) -
To summarize, (I'CCP) is fulfilled with p, > 0, p,, 71, fas = /= f1=0,7, = P, y, = p,, and

yl - p1 pr()vlded lhal
4
\/j \/7

K P
:714 _1>’
A K]
_ a 4
026[ 2pupl<1—1>},

Bz =0.
Note that fo5 = f2 for (¢,¢) € [p,, 7] % [0,75). !

ﬁl :9817 ZAS

>

In Theorem 2.1, we prove that under the initial conditions Py <up < pp and 0 < vy < Py, where Py
P, and p, fulfill condition (2.5), the diffusive predator-prey system

% (t) +0P1 (u(t)) 3 aq () u(t) (1 — 2((?)) —a({t)v(t) (1 —exp(—bu(t))) for a.e. t € (0,T)
(S)¢ dv v ()
g () +0P2 (v () 2 a2 (t) v (F) ( - Cu(t)) for a.e. t € (0,7T)

u (0) = ug € dom (0P1), v (0) = vy € dom 0P,

possesses a unique solution (u,v) € C ([0,7], L? (Q))2 which satifies p, < u(t) <p; and 0 <wv(t) <py.
Furthermore, if we assume that for all T > 0, the functions t — o (,), 4 = 1,2, t — %) and ¢+ a (¢, )

K(t D

belong to W' (0,T, L% . (RY)), then u and v possess a right derivative at each ¢ € (0,T). The system
models the evolution of two species with density u and v of a prey and a predator respectively with birth
growth rate a; and . The prey population satisfies a logistic growth with some time-space depending
maximum carrying capacity K (the carrying capacity of the prey when the density of the predator is
equal to zero), perturbed by a “predator term” —a (t) v (t) (1 — exp (—bu (t))) with a growth coefficient
a. This term presents a saturation effect, i.e. —a () v () (1 — exp (—bu (t))) saturates to —aw (¢) for u (t)
large, which reflects the limited capability of the predator when the prey is abundant. There exits many
other choice of predator terms with saturation effects, and we refer the reader to [7, Section 3.3] for

various examples in the context of o.d.e’s. The predator population satisfies a logistic growth with a

g Q
carrying capacity proportional to the prey density. The condition A = ¢==2 > 4 on the dimensionless
acp

coeflicient A, prevents the extinction of the prey specie since its guarantees existence of P> 0.

Examples 2.4. Example derived from thermo-chimical models.

fl (t,l’, <7</) = - (t,l’) Cpfo (g/)
f2 (t,l’7 C?CI) = 09 (tvx) Cpf(] (CI)
where
Y

X — ) if
fo(¢) = ep(” <'> ¢>0

0 otherwise,
and a; > 0, g < 400, p > 1, and v is a positive constant.

Proposition 2.4. The pair (f1, f2) is a TCSVR-function with

p.=0, y =0;
{ ; any posmf real number, 7, = 7y, U, (t) = a2p; exp (7) t + py.
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Proof . Clearly the pair (f1, f2) satisfies the structure condition of TCSVR-functions with { = 1. Let us
show that (f1, f2) fulfills condition (T’C'CP). From the fact that fi (¢,2,0,(') = f2 (¢,2,(,0) = 0 we see

that i1 = f2 =0and p1 =p2 =0,y =y, =0are suitable. Take 7, > 0 arbitrary and f, =0, 7, = p;.
We have

fl (t7xay1 (t) ) CI) S 0= ?1 (tayl (t))
for all ¢/ > 0. Finally, according to inequality
ot ¢) = aalt)emp (- )

< @apy exp (7)

for all ¢’ > 0 and all ¢ € [0,%, (T) = p;], the constant function f, (¢,¢’) = @2p} exp (7), and 7, (t) =
o} exp () t + Py, with py > 0 arbitrary, are suitable to complete condition (T'CCP). !

The pair (f1, f2) is associated with the diffusive system

)+ 0%, (u(1) > ~oa (O u (1) fo (0 (1)) for ae. 1 € (0,7)

() (jl: (t) + 02 (v(t) 3 az () u(t)” fo (v (t) for ae. t e (0,T)

u (0) = up € dom (0P1), v (0) = vy € dom 04,

where u and v denote a chemical concentration and the temperature respectively, in a non isothermal
chemical reaction process, a; and £2 are called Thiele number and Prater number respectively (see [8] and
references therein). We prove in Theorem 2.1 that under the initial condition 0 < ug < p;, 0 < vy < Py,
then (S) possesses a unique solution (u,v) € C ([0,7], L? (Q))Z, and that for all ¢ € [0,T], 0 < u (t) < py,
and 0 < v () < @ap! exp (7) t+py. Furthermore, if we assume that for all 7' > 0, the functions ¢ — «; (¢, -)
belong to Wt (0 T, Lloc (RN))7 then u and v possess a right derivative at each ¢t € (0,7).

Examples 2.5. Example derived from FitzHugh-Nagumo models.

fi(t2,¢,¢) = a1 (t,2) ((C—a(t,z) (1-C) —b(t,2)¢
fo (6,2, ¢, () =az (t,z) ¢ —c(t,x)

where +o00 > @; > o; (t,x) > a; > 0 for i =1,2; +00 > b > b(t,z) > b > 0; +00 >¢ > c(t,z) > ¢ > 0;
and 0 < a(t,z) < 1.

Proposition 2.5. Sety = % Then the pair (fi, f2) is a TCSVR-function with

(2.11)

y,=y;=0,i=12
Proof . The pair (fi, f2) satisfies the structure condition of TCSVR-functions with [ = 3: take

r1(t,x) = (a1 (t,2),—aq (6, ) a(t,z),—b(t, ),
hl (C/) = (1’ 17</)a

and
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Let us show that (fi, f2) fulfills condition (TCCP) with p, p;, and y,, ¥; given by (2.11). We look for
S f; in the form of null functions. Then p, and p; must satisfy

fi (t,x,gpc’) <0, V¢, p, < ¢ <o, (2.12)
fi(t,z,p1,¢") >0, V¢, p, < <Py, (2.13)
f2 (t,%C,gz) <0, V¢ p, <C <Py, (2.14)
f2(t,2,(,p2) 20, V¢, p, <C <7y (2.15)

We assume p, < 0 for i = 1,2. For all ¢ € [p ,p;] we have aa( — cp, < @2p; — cp,. Then, for obtaining

(2.14), it suffices to take p, = (22)p;. Similarly, for all ¢ € [p,, P1] we have aa( —cp, > ayp, —Cp,, SO
that it suffices to take p, = (72)81 for obtaining (2.15).
On the other hand, for all ¢’ € [p,, 7] = [(22)p,, (7)51], we have

aipy (7 — @) (1= 7)) < arpy (31 —a) (1= 71) = ()7
so that, for obtaining (2.12), it suffices to take p, and p; satisfying
p1(p1—a) (L —p1) <vp,. (2.16)
Similarly, for obtaining (2.13), it suffices to take p , and p; satisfying
P, (Bl —a) (1_81) > Py - (2.17)
Take p, <0 <P, with p, = —7p;. Then (2.16) and (2.17) is equivalent to

(a—71)(1=5y) =%

(o2 (1) >

The first inequality is fulfilled for p; > v+ 1. The second inequality is satisfied for p ,Sa— ﬁ , i.e.,
! - _ -

2R

=R

for p; > ~% . Hence (2.12) and (2.13) are satisfied for p, satisfying the first condition in (2.11). !

|2

The pair (f1, f2) is associated with the system

du

o B+ (w)da®)u®t)(ut)—a(t,z))(1—u®)—b(t,z)v(t) for ae. t € (0,T)

(S) % (t) = o () u(t) — c(t)v (1) for ae. te (0,T)

1 (0) = ug € dom (0P), v (0) = vp.

coupling a reaction diffusion equation with a nonlinear o.d.e.. This coupling generalizes the FitzHugh-
Nagumo model describing the evolution of the electrical potential across the axonal membrane. The
variable v is a recovery variable obtained in the simplification of the Hodgkin-Huxley Theory of Nerve
Membranes (see [7]). For the analysis of boundary value problems relating to e FitzHugh-Nagumo
equations in one space dimension, we refer the reader to [5, 6, 9].

2.3. Existence and uniqueness of a bounded solution. Combining [1, Corollary 3.1] with a suitable
fixed point procedure, we establish the existence of a nonnegative bounded solution to the Cauchy
problem associated with TCSVR-functionals.



CONVERGENCE OF TWO COMPONENTS NONLINEAR REACTION-DIFFUSION SYSTEMS 11

Theorem 2.1. Let (Fy, F>) be a pair of TCSVR-functional with p., p;, y, and ; given by condition
(TCCP). Assume that fori = 1,2, aoip, < i < ao:p; on 0. Then the two component reaction-
dilusion system
du

SO+ 00 (u(t) 3 Fi (tu(t),v (1) forae. te (0,T)

(S) %(t)mcpg (0 () 3 Fs (t,u(t),v (1)) for ae. t e (0,T)

Py Suo=u(0) <py, p, <vo=v(0) <Py uo € dom(9P1), vo € domIP,

possesses a unique solutiotu, v) € C ([0,7], L* (22)) x C ([0, T], L (2)) satisfying:
(S1) u(t) € dom (D®;) and v (t) € dom (D®,) for a.e. t € (0,T)
(S2) w and v are almost everywhere derivable ir(0,T),

(S5) u(t) € [yl t), 7 (t)} and v (t) € [QQ (t), 7 (t)} for all ¢ € [0, 7).

If moreover 7; : t — r; (t,-) and g; : t — q(t,-) belong toW ! (0, T, L* (2, R")) and W (0, T, L* (Q))
respectively, thenu and v satisfy
(S4) u(t) € dom (D®,) and v (t) € dom (D®;) for all ¢t €]0,7], v and v possess a right derivative

du’ (1) and ¢ (1) at every t € (0,T), and

dut
W 1)+ DOy (0 (1) = Fi (tut) 0 (1)
dvt
WL (1) + Dy (0 (1) = By (1 (1), (1),

Proof . Step 1 (local existence). We establish existence of a unique solution of (S) for T small enough.
For T' > 0 set

X :={(u,v) € C([0,T],X) x C([0,T],X) : u and v fulfill condition S}

which is clearly a closed subset of the space C ([0,T], X) x C ([0, T], X) equipped with the norm product
defined by || (u,v) [[exc = llullco,,x) + [[vlleo,m,x)- Therefore X7 is a complete metric space when
equipped with the metric associated with the norm || - ||cxc-

For each (u,v) € Xr, we consider the two reaction-diffusion problems with unknown Ajv and Asu
respectively defined by

dArv (t) + DPqy (A1v (b)) = F1 (t, Ao (t) ,v (t)) for ae. t € (0,T)
dt
(P1)
Py S Av(0) = ug <1y,
dAgu

) o (t) + D®y (Agu (t)) = Fa (t,u(t),Aqu(t)) for ae. t € (0,T)
Po

Py < Aou(0) = vy < py.

We first claim that (P;) and (P2) possess a unique solution Ajv and Asu satisfying (S1), (S2) and (S3)
where Av and Au are substituted for u and v respectively. The proof is a straightforward application of
[1, Corollary 3.1]. Indeed, for fixed (u,v) € X, set

Ty (ta ‘T) =T (tvx) ©h (’U (tv :Z:)) s Jo (taxa C) =Ty (ta :17) " g1 (C) +q (tvx)
Ty (ta (E) =T2 (t,$) © hs (u (ta (E)) s fu (t,.’b, C/) =Ty (t,.’t) " g2 (C/) +q2 (tvx)

and, for (U, V) € L? (Q)xL?(Q), F, (t,U) (z) = f, (t,z,U (z)), F, (t,V) (z) = fu (t,2,V (z)). Therefore,
(P1) and (P3) may be written as

dAl’U

(t) + D®q (A1v (t)) = F, (t,Av (t)) for a.e. t € (0,T)
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dAgu
dt

(t) + DPs (Asu (t)) = F,, (¢, Agu (¢)) for a.e. t € (0,7T)
(P2)

Py < Ao (0) = vo < 1o,

so that the claim follows by applying [1, Corollary 3.1], provided that we establish that F,, and F,, are
SVR-functionals. For this, just note that each function f, and f, clearly satisfies the structure condition
of SVR-functions, and that condition (CP) is fulfilled because (f,, f.) satisfies (I'CCP), and v and u
satisfy (S3).

For proving (S;), it remains to prove that ¢ ~ 7, (¢,-) and t — r, (¢,-) from [0,T] into L? (Q) are
absolutely continuous. For ¢t — r, (t,-) the claim follows from the absolute continuity of r; and v, and
the following estimate

lro (t,2) =70 (5:) 2 rry < llr(t) © ha (0 (t) =71 (s,7) © b (v (1) [l 2rr)
+lr1 (s,) © hy (v (1) =71 (8,+) © b1 (v(5)) |2 R
< th”L’x([gQ(T)@?(T)],Rl) 71 (£,) =71 (s,°) 2R

Hr1ll Lo 0,71 xrRY RO Ly [[V (£) = v (8) [ 22(0)

where Ly, denotes the Lipschitz constant of hy in [y, (T), 7, (T)]. For ¢ — ry (t,-) the proof is similar.

Let us consider the operator A : X7 — C ([0,T],X) x C ([0, T], X) defined by A (u,v) = (Arv, Aqu).
We are going to establish existence of a fixed point of A for T" > 0 small enough. Such a fixed point
clearly furnishes a solution of (S) fulfilling (S7) — (S4).

A(X71) C Xr. Let (u,v) € X7, then A (u,v) = (A1v, Agu). According to the considerations above, we
have (Ajv,Aqu) € C([0,T],X) x C([0,T],X), and Y, (t) < Ao (t) <7, (1), Y, (t) < Aqu(t) < gy ().
Therefore (A,, Asu) belongs to Xr.

A is a contraction for T' > 0 small enough. Let (u1,v1) and (ug,v2) in Xp. We first estimate

A (u1,v1) — A (u2,v2) loxe = || (Avr — Arve) ||x + || (Agur — Aous) [ x-

From (P;), by subtracting the equation related to Ajv; from the equation related to Ajvg, and taking
the scalar product in X with A;v; — Ajvg, and using the fact that D®; is a monotone operator, we obtain
that for a.e. t € (0,7

1d

5@” (A1 — Aqva) (8) 1% < (Fy (8, Aoy () 01 (1) — Fu (8, Aqwa () 02 (1)), Aqvy (8) — Aqog (8)).

Thus, for a.e. t € (0,7T),

d
a” (A1 — Ayva) (8) 1% < 201y (, Aqvy () 01 (8) — Fy (8, Aqwa () 02 (1) [|x[[Aror (8) — Agos (8) || x
< |Fy (8, Aoy () 01 (8) = Fo (8 Aqva (8) 02 (1) 5% + [A1o1 () — Agos (2) |-
(2.18)
According to the structure of the functional Fj, we have
[Fy (t, Aqvy () 01 (1) — Fy (8 Aqva (8) 02 (1) [
< C(T, g1, h) [Jor () —va (8) 1% + C' (T, g1, ba) [ Ao () — Aqva (8) 1% (2.19)

where

C(T,g1,h) =2 sup 191 () P71 oo (R iy Ly (1),
¢ely, (7)., (7))

C'(T,g1,h) =2 sup  [ha (¢ Pl ey miyLar (T)7,
¢ely, (1)7,(T)]

Lg,, Ly, denoting the Lipschitz constants of the restrictions of g1 and hy on [y, (1), (T))] respectively.
Combining (2.18) and (2.19) we infer that for a.e. t € (0,T)

(Arvr (8) = Aywa (1) (1% < C (T, g1, ha) [Jor (8) =2 (8) |5+ (14 C (T, g1, b1)) [|Ar01 (8) = Aoz (2) [|%-
(2.20)

Ly
dt
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By integrating this inequality over (0, s) for s € (0,T) and noticing that Ajv; (0) = Ajve (0) = ug, we
obtain

[Arvr (5)—Aqva (s) |5 < C(Tvglahl)/ l[v1 (£)—va () |5 dt+(1+C (T’glvhl))/ [Avvy (8)—Aqvs () || 5cdt
0 0

(2.21)

from which, according to Gronwall’s lemma, we deduce that for all s € (0,7,

I (Arvr (s) = Aoz () [IX < T C (T, 91, ha) [lor = v2llEpo. 17, exp (L + C' (T, 91, 1)) T)
Proceeding similarly, we obtain, with suitable adapted notation,

| (Azui (5) = Aguz (5)) |% < T C (T, g2, h2) llur — wal[E 0,7y, x) exp (1 + C' (T g2, ha)) T) -
Consequently

[A (u1,v1) = A (uz,v2) loxe < C(T) || (ur,01) = (u2,02) oxe
where
1 , T 1 , T

C(T)=Twmax | C(T,g1,h1)2exp | (1 4+ C' (T, g1,h1)) 3 ,C (T, g2,h2)2exp | (14 C' (T, g2, h2)) 3))
Since

T<T — [y, (1),5, (D) |y, (1"),5, (T)] and |y, (T).7(D)] < |y, (T"),5,(T")],
the two non negative constants C (T, g1, h1) and C (T, g2, he) are bounded so that %im0 C (T) = 0, thus
—

A is a contraction for T" small enough.

Step 2 (uniqueness). Let (u1,v1) and (ug2,v2) be two solutions of (S), then taking Ajv; = uy and
Ajvy = ug in (2.21) we infer that for a.e. ¢ € (0,7T)

lu () = uz () [IX < C(T, g1, ) /O lvs () = vz (8) I dt + (1 + C' (T, g1, ha)) /O luy (£) = uz (t) |5 dt.

Similarly

lvi (s) = v2 (5) 5 < C(T' g2, ha) /O lus () = ua (t) [Ixdt + (1 + C' (T g2, ha)) /Oslvl (t) — vz (t) |5 dt.

By summing these two inequalities, we obtain

lus (s) = uz () % + llvi () —v2 () Ix < € /0 (lux (8) = w2 (8) 5 + llon (8) — w2 () [I%) dt
for some non negative constant C', so that, according to Gronwall’s Lemma
lur () — w2 () X + o1 () —v2 (5) [ = 0
from which we obtain uniqueness.
Step 3 (global existence)Let denote by T* > 0 a small enough number obtained in step 1 so that (S)

possesses a unique solution in C ([0, 7*], X) x C' ([0, T], X'). We know that for 0 < § < T, % belongs to
L? (6, T*,X) (see [1] and references therein). Set
E:={T>¢:3(u,v) € C([0,T],X) x C([0,T],X) solution of (S)}.
Since T* € E, we have E # (. Set Thjqz := sup F in R and denote by (u,v) the maximal solution of
(S) in C ([0, Thraz), X) x C ([0, Taraz), X), and argue by contradiction by assuming that Thre, < +00.
a) We first show that . lim w(t) and . lim o (¢) exist in X.
—

—TMax Mazx

Let T € E, then for ae. ¢ € (0,T) we have
<‘f;; (t), ‘jii: (t)> + <D<I)1u(t) : 2—1: (t)> = <F1 (t,u(t),v (1)), % (t)> , (2.22)
<ZZ; 0.2 (t)> + <D¢>2U(t) 2 (t)> - <F2 (tut), 0 (1)), % (t)> , (2.23)
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du
dt

du
dt

(t)

(t)

From (2.22), we infer
2 3
at| .
X

T 2 B T ) % T
/5 () ¢1<u<5>>s</0 IFy (tu (), 0 (8) 1% dt) (/5
(2.24)

For all T' € E, we have [y, (T),7, (T)] C [y, (1), ¥ (Timaz)]- Thus, according to the structure of Fi,
there exists a constant
C (”Tl ||L°°(RN;RL)7 ||gl ||L°° ([gl (Trmaz )Yy (TnLa:L')LRl) ’ ||h1 ||L°O ([El (Trmax)Y1 (Tmaw)]le)>
that we write C in short, such that
10 (tu(t) 0 () [ < 2C2Ln () + 2lar (4,-) 1%
Therefore, since inf ®1 > —oo (see[l, Proof of Corollary 3.1], and 1 € L? (0, Thnaq, L? (), (2.24) yields

T 2 T 2 %
/ dt<C |1+ / dt
§ X ) X

where the new constant C' does not depend on T. We infer that
Traz || 4 2 T4 2
/ ol dt = sup / Lo dt < oo,
5 dt X TEE 5 dt X

from which we deduce that u : [0, Tarar) — X is uniformly continuous. Indeed, for s < t in [, Thraz) We

have 1
2 Thlaz 2 2
lw(t) —u(s)||x < dr < (t—s) / dt
X 5 X

so that u is more precisely i—Holder continuous. Since X is a complet normed space, according
to the continuous extension principle, u possesses a unique continuous extension @ in [d, Threz] i-e.
limy .. w(t) = @W(Thiaz). Similarly, from (2.23), we deduce that v possesses a unique continuous

extension U in [0, Tasqy] i-e. limg7,,., v (t) =T (Thras). which proves the claim.

du

du
T (t)

T (t)

du

du
ar (1)

p (t)

D=

b) Contradiction: For T' > 0, consider the two component reaction-diffusion system

Lig (t)+ Dy (U (¢)) = F1(t,U (t),V (¢)) for ae. t € (0,T)
(S") Cil‘t/ (1) + DBy (V (1)) = F> (1, U (1), V (1)) for ace. t € (0,T)

PySU0) <7y, p, <V(0) <7

where p' =y (Timaz), P1 = Uy (Timaz), and p), = y, (Tinaz), Po = Uz (Tinaz). Note that U (0) €
dom (D®;) and V (0) € dom (D®;). Then according to step 1, there exists 7** > 0 small enough
such that (S’) possesses a solution (U, V) € C ([0,7**], X) x C ([0, T**], X). Set

(1) = {u (t) if t € [0, Tasas)
U (t — Trraz) if t € [Thraws Trraz + T,
and
5 (o) = { v(t) if t € [0, Taras]
V (t — Tavrax) if t € [Trhraz, Taras + T
X) x

Then (u,v) € C ([0, Thaz + T, C ([0, Thiae + T**],X) is a solution of (S), which leads to a
contradiction with the maximality of Th;qz. !

Remark 2.2. By using [1, Corollary 3.2], and following the arguments of the proof above, the conclusion
of Theorem 2.1 holds true if for ¢ = 1 or ¢ = 2, the functional ®; is of the form

/QWi (z,Vu(z)) de ifue Hp (Q),

otherwise,
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and p, < 0 < p; (recall that Hp () = {ve Hi (Q):u=0onT;}. The domain of 9®; contains the
Dirichlet-Neumann boundary conditions as stated in [1, Lemma 3.2]:

dom (89;) = {w € H(Q) : div DeW; (-, Vw) € L*(Q),w =0 on I';, DeW; (-, Vw) -7 =0o0ndQ\T;}.

Remark 2.3. A careful analysis of the proof of [1, Corollary 3.1] shows that its conclusion still holds
when ®; = 0 for i = 1 or i = 2. Indeed the lower condition «|¢|? < W; (x,€) with a > 0, only serves to
ensure that inf,cz2(q) ®; (v) > —oo. Therefore the conclusion of Theorem 2.1 remains valid for systems
(S) coupling a reaction-diffusion equation (r.d.e.) with a non diffusive reaction equation (o.d.e.) (see
Example 2.5), or two non diffusive reaction equations (o.d.e.).

3. GENERAL CONVERGENCE THEOREM FOR A CLASS OF TWO COMPONENTS REACTION-DIFFUSION
SYSTEMS

For ¢ = 1,2, we are given a sequence ((I)iv”)neN of functionals of the calculus of variations @, , :
L? () — RU {+o0} defined by

/W x,Vu(z)) de+ = / amu2 d?-lN_lf/ Yinu dHy_1 ifue H (Q),
90 990

otherwise

where ¢; ,, € LHN . (09)), ain € L3, (09) with a; ., > 0 Hy—1 a.e. in 9Q, and a;,, > 05, on I'; C ON
with Hx—1 (T;) > 0 for some o5, > 0 and W, ,, : RY x RY — R is a measurable function which fulfills
the following conditions:

(D1) there exists {a;,} C R and {8;,} C R%, such that for a.e. 2 € RY and all £ € RY and all

n €N,
ai,n‘§|2 < Win(2,8) < Bin (1 + |§‘2) )
(D) for a.e. x € RN, & — W;,, (z,€) is a differentiable and convex function,
(D3) Wi (x,0) = DeW;,, (2,0) = 0.
Moreover we assume that W; ,, is uniformly strongly convex, i.e.,
(D4) 3y; >0, s. t. for all £ € RY, inf IieanN DWW (3,6) £ > vil€]%

In the following we fix 7' > 0 and we are given a sequence ((F1 ., F2n)),cy of TCSVR-functionals,
each of them being associated with (7 n, Gin, Rins @in),s 1.6 Fip (tu,0) (x) = fin (tx,u(x)v(z)) for
all t € [0,T], a.e. © € Q, and all (u,v) € L2 (Q)*, where

fl,n (ta z, Ca C/) = rl,n (t7 I‘) © hi,n (CI) : gl,n (C) + q1,n (t; £E) fOI‘ all (t7 x, C) S [07 +OO) X RN X Rv
f2,n (ta z, Cv C/) = r2,n (t, :L') @ h2,n (C) : gQ,n (C/) + q2,n (t, .’E) fOI' au (tv xZ, C) S [07 +OO) X RN X R
(3.1)
We assume that for all n € N, h;,, and g; , are locally Lipschitz functions, uniformly with respect to n,
i.e., for all interval I C R, there exists Ly > 0 and L’I > 0 such that

SupneN |gz,n (C) — Gin (C/) | S LI‘C - C/| 7V (C7 <I> € R27 (32)
SU'anN |hi7ﬂ (C) - hi,n (C/) ‘ S L/I|C - C/| ,V (C7 C/) S R27
and that the absolute continuity of the functions 7, : t — 7, (¢,-) and ginn : t — gn (t,-) holds
uniformly with respect to n, i.e.,

T
d 1,1
sup/ i (t,-) dt < +o00,
n 0 dt L2(Q,R!)
d (3.3)
sup H din (t,-) dt < +o0.
L2(Q)
Finally we assume that
p, = infy;, (T) > —o0 and p; == sup¥; ,, (T) < +o0, (3.4)

and, for all n € N,
Winp, < Pin < QippPy on 0N (3.5)
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where y, ~and 7; ,, are given by condition (TCCP) fulfilled by (Fin, Fb,). Recall that these functions
are solutlon of suitable o.d.e. with initial condition Lin and p, ,, respectively.

Theorem 3.1 (General convergence theorem). Assume that for i = 1,2, the sequence of densities
(Win),en SatisPes conditions(D;), (D2), (D3), and (D), and that the sequence of TCSVR-functionals
(Fin, Fon),cn SatisPes conditions (3.2) (3.3), (3.4), (3.5). Let (uy,,v,) be the unique solution of the
systent

C%n (t) + 0P1,p (un (t) 3 Frp (t,up (t), v, (t)) for a.e. t € (0,7)
(Sn) dvn

s (t) + 0P2,, (v, (1)) D Fop (t,up (t) 0, (t)) for ae. t € (0,7T)

Py U0 =1 (0) Py py <00 = 04 (0) < Bl € dom (@1,,), 02 € dom ().

Assume that
M

Hl) b0 = PO; and sup,, ||90i,n||L$_tN71(ag) < 40o0;

) sup,en P1n (u%) < 400 and sup,,cy P2.n (vg) < +o0;
H3) u? — u® and v2 — v strongly in L2 (Q2);
H,) gin and h;,, pointwise converge tog; and h; respectively,
Hs) sup,, ||T»L',nHLoo([o7+oo)><RN7Rl) < +o00 and Tim — T4 in L? (O,T, L? (Q,Rl))

wherer; € L* ([0, +00) x RV, R!);
Hg) For all t € [0,T], sup, l|gin (t,-) | 2(0) < +00 and g, — ¢; in L? (0,7, L* (Q)).

Then (un,v,) uniformly converges in C (0, 7], L? (Q2)) x C ([0,7], L* (22)) to the unique solution (u, v)
of the system

du

s (t) + 01 (u(t)) > Fy (t,u(t),v(t)) forae. t e (0,T)

— (t) + 0%5 (v (t)) D Fa (t,u (t),v (¢)) fora.e. t € (0,7)

p, <u’=u(0) <py, BQSUOZU(O) <Py, u® € dom (1), v° € dom (®3).

The reaction functionals F; : [0, +o00) x L% (Q) x L? (Q) — R®, i = 1,2, are debned for allt € [0, 7], all
(U, V) e L*(Q) x L? () and for a.e. z € Q, by
Fi (t,U,V) (I) fl (t,I,U(I),V(I)),
fi(tz, ¢, ) =r(tz) ©hi (¢") - g1 (Q) + a1 (t,2),
fa(t,2,¢,¢) =r2(t,2) ©ha (¢) - g2 (') + @2 (t, 2) .

Moreover p, < u < 7y, p, < v < Py, and (G dun) (e dv) weakly in L2 (0,7, L* (Q)) x
12 (0,7, L2 ().

)
)

Furthermore, if (@1, (u%), @1, (v2)) — (@ (u°),® (v°)), ri, — i strongly in L2 (0,T, L? (O, RY)),
and ¢;,, — g; strongly in L? (0,7, L2 (Q)), then (%n dun) _y (du dv) strongly in L2 (0,7, L? () x
L2 (0,7, L% ().

Proof . In the statement of Theorem 3.1, we assume that u9 € dom (®;,) and v9 € dom (®,,,). Since

dom (®; ,) C dom (D®;,,) we have (ul,0v0) € (dom (D®1.4,), dom(D<I>2,n)>7 so that, according to The-

orem 2.1, (P,,) possesses a unique solution (uy,v,) which satisfies (Sz) — (Ss) of Theorem 2.1. We follow
the outlines of the proof of [1, Theorem 4.1].

4Note that dom (2,0 ) ! dom (®2)
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Step 1. We establish

P, Sun <ppand p, <vp <y (3.6)
gi:=  sup gia(Q)| <400, hiz= sup  |hin (Q)] < +oo (3.7)
(¢m)Elp, Pl xN (¢m)Elp, Pl XN
duy, dop,
sup n < +00 and sup @n < +00; (3.8)
neN dt L2(0,T,X) neN dt L2(0,T,X)

From Theorem 2.1 the solution (un,v,) of (S,) satisfies p, < un < py,, and p, < v, <Py, so that
inequalities (3.6) follow directly from (3.4). We deduce (3.7) from (3.2), hypothesis Hy) and estimate
190 ()| < 195 (0) | + Ly 51[C], idem for .

Let us establish (3.8). In what follows the letter C' denotes various constants which can vary from line
to line. By using the structure of the DSR~functional F},, and from (3.7) and hypothesis Hs), we easily
infer that

=2
i (8 (), 0n (1)) 1% < 2L () [rinlZegih + 2l ain (&) 1%
< C (14 lgin (89 1%) - (3.9)
Thus, according to hypothesis Hg), we deduce

T
sup / | Fom (ttn ()0 (8)) % dt < +o0, (3.10)
n Jo

On the other hand, from (S,) we deduce that for a.e. t € (0,7,
2

‘ % )|, + <D<I>1,n (un (1)), dd% <t>> — <F1,,, (tun (£) 0 (1)), % (t)>
‘ dditn (t) 1 + <D<I>2,n (un (1)), d;f; (t)> = <F27n (t,un () ,vn (), ‘%ﬂ (t)>.

By integrating each two equalities over (0,7, we obtain
2

T du,, T du,, T du,,
L% ) a [ <D¢>1,n (un (t)),dt(t)> a= | <F1,n (t,un (£), (t)),dt(t)> dt,
T dvn 2 r drUTL 4 dvn
|G o s / <Dq>2,n (v (t)),dt(t)> a= | <F2,n (£, (£), (t)),dt(t)> dt.
(3.11)
Since (u%,v8) € (dom (®1,,),dom (P3,)), (%,%) belongs to L% (0,T,X) x L?(0,T,X) and t

Dy, (up (1)), t — Doy (v(t)) are absolutely continuous (see [3, Theorem 3.6]). Therefore for a.e. t €
(0,7), @1, (un () = (D@15 (up (), L (£)), and £ P, (vy () = (DD (v (), L () (see [2,
Proposition 17.2.5]). From the first equality in (3.11) we deduce

2

" R &)+ [ o (8) 0 (1)), 2
L lGo| a=-sme@y o @)+ [ (At o052 0) @ oo
T % T u 2 %
<sgp@1,n<u2)+</0 |F1,n<t,un<t>7vn<t>>|%(> (/ 30 X) .

Hence, from (3.10) and hypothesis Hs), we infer that

Nl=

T 2 T 2
duy, du,
/0 o @) dt<C|1+ (/0 o (t) dt)

Reasoning similarly with the second equality in (3.11), we obtain

=

2

T T 2
duy, du,
/0 o @) dt<C|1+ (/0 o (t) dt) ,
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from which we deduce (3.8).

Step 2. We prove that there exists (u,v) € C([0,7],X) X
((n,vn)),en Dot relabeled, satisfying (un,v,) — (u,v) in C([0,T], X) x
the norm || - [|exc-

We apply the Ascoli-Arzela compactness theorem for each two sequences (uy),cy and (vn), oy We
reason for (u,),, ¢y, the same reasoning holds for (vy,),,cy. From (3.6), (un),, ¢y is bounded in C ([0, T7, X).
Moreover, for s < t, (s,t) € [0,T], we have

C([0,7],X), and a subsequence of
C ([0,T],X) equipped with

du,

< (t—s)lsup o

L2(0,T,X)

ltn (1) — un (5) |1 x < /

X L2(0,T,X)

which, from (3.8), proves the equicontinuity of the sequence (uy), cy. It remains to establish for each
t € [0, 77, the relative compactness in X of the set E; := {u, (t) : n € N}. For ¢ = 0 there is nothing to
prove because of hypothesis H3) on the initial condition. We are going to prove the relative compactness
of E; for ¢t €]0,T]. In what follows ¢ is fixed in 0, T7.

According to Theorem 2.1, u, satisfies (94), then possesses a right derivative at ¢ (at ¢t = T, this is
due to the fact that u,, exists in C ([0, +00), X) so that the right derivative of u,, at t = T is nothing but
the right derivative of the restriction of u,, to [0,7]). Moreover

dut
d—t" (t) + Dy, (up () = Fin (t, up (8) 0, (2)).

Taking u,, (t) as a test function, we infer that

du;t

- 05 un (t) ) + (D1 (un (1)), un () = (Frn (8 un (8), 00 (1)), un (1))
hence, according to the Green formula and to the fact that u, (t) € dom D® ,,

/QDEWLH (z, Vuy, (t)) - Vuy, () d

du;
= o DeWi o (2,V up () - nup (t) dHN—1 — /Q o () up (t) dx+ /Q Fi o (tup (t), v, (1)) do
du:[
- /a (P it (1) (1) v = /Q S () un (1) o+ /Q Fin (tun (1) 00 (1)) da
du;
< /69 P1nln (1) dHN_1 — o dt (t) up, (t) dz+ /Q Fip (tun (t) v, (t)) da.

Take 0 < v is the positive constant of the uniform strong convexity condition (Dy),
and Cypqce 18 constant of continuity of the trace operator. From (Dy), (3.6) and (3.9), we deduce that

2
1 [ W ®F o < el ool o)

N et [l dut
+ LT ()2 (| @) P (G un (), va () [l
t X
Ctrace CtraceV

IN

29 onnlZs, (o e

HN-1
dut

o @ ([ B0 1R 0.0 @) )

X

Ctrace 2 CtraceV 2 N
< 5, el e+ </Q|Vun(t)| dz +bL™ ()
N et (|l dut
+ 0 LT ()2 (| O A Fun (tua (t), 00 () llx ) -
X
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Hence

O 7‘{1061/ O race
(’Y—E)/ﬂVun(tszx S;TSUpHLanHQLQN o + LN (9)
1 +
+beN (Q)? (‘ duy; H

From (3.9), and hypothesis Hg), estimate (3.13) and (3.6) yields that (uy, (t)),,cy is bounded in H' (Q)
provided that we establish

+ SUE | F1n (& un (t) ,op (1)) |X)3.13)
ne

sup
n

d
—n H < +o0. (3.14)

Then from the compact embedding H! () — L2 (©2) we will conclude to the compactness of the set
E;. Therefore, to end Step 2, it remains to establish (3.14). This estimate requires the sharp result of
Lemma 3.1 below:

Lemma 3.1. Let X be an Hilbert space,T” >0, G € W' (0,7,X) and ® : X — RU{+oco} be a convex
proper lower semicontinuous functional. LetU satisfying

au

o (t)+0® (U (t)) > G (t) for a.e. t € (0,T),

U (0) € 09 (u).
Then the right derivative of U satisbes for all¢t €]0, 7’| the following estimate

HdU+ HX <G (#) x + dist (U(O),KH/; G ) ij B
? ( % (S)HXS ds)é (dist (U (0),K) +/0t 1G(5) 1 d8>5

where K :={V € X : ® (V) = 0}.

For a proof, we refer the reader to [3, Theorem 3.7]. Set Gy, (t) := Fi (¢, up (t),vn (t)). In order to
apply Lemma 3.1, we start by establishing the following estimate on the total variation Var (G, [0,T])

of Gy, in [0, T):
G, | dvy, r
— < —_
dt (t)Hx dtC<1+/0 dt (t)HX dt+/o

where C' is a nonnegative constant which does not depend on n. According to the structure of F} ,,, to
(3.7) and hypothesis Hg), we have

1Gn (1) = G () ||x ghllrn (t) = 70 (s) [l 2R + llan () = @n (s) |1 x
+7SLEE [T lloo 1gn (un () + hn (Vi (£)) = gn (un () = hn (05 (3)) ] x
dry, 1l dgyn
E( L2(Q,RY) dt+/s dt(t’.)Hx
+sup [|7nloo [|gn (un (1)) - hn (V5 (1)) — gn (un (8)) - hn (05 (5)) | x - (3-16)

neN

du,

Var (G,,[0,T]) = /OT o (t)HX dt) (3.15)

IN

IN

gﬁ t, )

On the other hand, from (3.2) and (3.7), we infer that

1gn (un () - Bn (05 (8)) = g (n (8)) - b (V0 (5)) ]| x
< gLy lvn (8) = vn ()]l x + PLjo g lun (8) = un ()] x

dvu, — ¢
E (0') do + hL[O,b] /
X s

Combining (3.16), (3.3), and (3.17), and we deduce (3.15).

Set K,, := {w € X : @1, (w) = 0}. Since @y, (0) = 0, we have dist (u2, K,,) < [|ud||x so that from
hypothesis Hz) sup,, dist (uQ, K,) < sup, |[u%||x < +oo. Applying Lemma 3.1, and according to (3.9),

duy,
< gLy %(0—) do. (3.17)

’ X
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Hg) and (3.15), we infer that there exists a nonnegative constant C' (¢,7T), which depends only on ¢ and

T, such that
1
dut dun T du, :
% 0 <cwn |+ [t >|th+</ <t>||xdt>
t | o | at

and (3.14) follows by applying Cauchy-Schwarz’s inequality and using (3.8), which ends Step 2.

Step 3. We assert that (”Z‘—t", d[}’—t") (‘f;;, ‘fl;’) weakly in L2 (0, T, X) x L? (0, T, X) for a non relabeled

subsequence, and that p. < u < p;, p, < u < py. The first claim is a straightforward consequence
of (3.8) and Step 2. The second one follows from inequality Prp S Un S Prps Py, < Un S Py and
(tn,vn) = (u,v) in C([0, T}, X).

Step 4. We prove that (u,v) is the unique solution of (). The proof mimics that of [1, Theorem 4.1].
The only change is the following version of [1, Lemma 4.3]:

Lemma 3.2. For i = 1,2, the functional G, ,, = F;,, (-,u,,v,) weakly converges inL? (0, T, X) to the
functional G; debPned byG; (t) = F; (t,u (t),v (t)) where Fy (t,u (t),v () =r1 (¢) ©hy (v (t))-g1 (u (t)) +
q1 (1), and Fy (t,u(t), v (t)) =r2(t) © ha (v (1)) - g2 (u (1)) + g2 (1)

Proof of Lemma 3.2. We only prove the weak convergence of G; and omit index 1. The weak convergence
of Gy is similar. Recall that G,, (t) = H,, (t) + ¢, (t) where

H, (t) (z) =7, (t,2) @ hyp (v, (¢, ) - gn (U (E,2)) =1 (E,2) - by (v, (8, 2)) © g (un (8, 2)) .
Since g, — ¢ in L? (0,7, X), it remains to prove that H, — H in L? (0,T, X) where
H(t)(z)=rtz)0h(v(t,z) gu(t,z)=rz) h(tz)og(t).
Hence, since 7, — r in L? (0, T, X), it suffices to establish that
ho (Vn) © gn (un) = h(v) © g (u)
strongly in L? (Q, Xl), where X! denotes the space L? (Q, Rl). We have °
[hn (vn () © gn (un (t)) = h (v ( ) ©g(u®)|x
< A (vn (£) © gn (un () = ha (v (8) © g (u (1)) || x:
+ ([ (v (8)) © g (u(t)) = h (v (t) © g (u(t)) || x:
< Bllgn (un (8)) = g (u (1)) [Lxt + Gllhn (va () = h (v (1)) || x2
< hLpogllun (8) = u (t) [[x + hllgn (u () = g (u(t)) || x:
+ Lo p)llvn (1) = Tu (@) [[x +Gllhn (v () = h(Tu(?)) || x:-

Hence, for proving the claim, it remains to establish that

T T
/ llgn (u () — g (u(t) |5 dt — 0, / [, (0 (£)) = h (v (8)) |50 dt — 0 (3.18)
0 0
/O ln (8) —u (t) |% dt =0 (3.19)
T
/0 lvn () — v () ||% dt — 0. (3.20)

The two convergences in (3.18) are a straightforward consequence of hypothesis Hs) and the Lebesgue
dominated convergence theorem. Convergences (3.19) and (3.20) follow from Step 2, which completes
the proof of Lemma 3.2. !

The rest of the proof of Theorem 3.1 follows exactly that of [1, Theorem 4.1]. !

5To simplify the notation we write g (v (t)) for the function z "# g (v (¢, z)), idem for h (v (£)), gn (v (t)) and hn (v (1)).
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4. CONVERGENCE THEOREM IN THE CASE OF A COUPLING BETWEEN A REACTION-DIFFUSION
EQUATION AND A NON DIFFUSIVE REACTION EQUATION

We assume now that ®5, = 0. In the study of the limit process, the difficulty lies in obtaining the
compactness in C ([0,7], L? (Q)) of sequences of the second variable v,, satisfying the o.d.e. (Step 2 in
the proof of Theorem 3.1), because of the non strict convexity of ®2,. To remedy this problem, we
are led to assume additional regularity conditions on the reaction functional of the non diffusive second
equation and on his initial condition. To shorten the notation we denote by ®,, the functional ®; ,, by
W, the density W1 ,,, and by ¢,, the surface density o1 .

Theorem 4.1 (Convergence theorem for problems coupling r.d.e. and o.d.e.). Assume that the sequence
of densities (W,,),, .y satisPes conditions(D;), (D2), (D3), and (Dy), that the sequence of TCSVR-
functionals (F7, o Fs ),y SatisPes conditions (3.2) (3.3), (3.4), (3.5). Assume furthermore that g, and
hy belong toC}. (R,R'), and that 75, and g¢;,, do not depend on the spatial variable. Le{u,,,v,) be
the unique solution of the system

du,

o (t) + 0Py, (up, (t)) D Fip (t,un (t),v, () for ae. t e (0,7)

(Sn){ don (t) = Fap (t,uy (t) 0, (t)) forae. t € (0,T)

Py S = (0) < Prs gy, <00 =00 (0) < Py ) € dom (2,), o) € H (D).
Under conditions
H,) 9, M & and sup,, ||g0n||L${N_1(aQ) < +o0;
HQ) SupneN q)n (Ug) < 4005
H}) u® — u° strongly in L? (Q) and v2 — v° weakly in H! (Q2);
H4) g¢in and h; ,, pointwise converge tog; and h, respectively,
Hs) sup,, |75 nll Lo ([0,4-00) xRV 1) < +00 @nd r; , — 7; in L? (O,T, L? (Q,]Rl))
wherer; € L* ([0, +00) x RV, R!);

Hg) For all t € [0,T], sup,, [|gin (t,-) |l22(0) < +o0 and g;,, — ¢; in L? (0,7, L? (2)),
the solution (u,,,v,) uniformly converges in C ([0,7], L* (22)) x C ([0,T7], L* (2)) to the unique solution
(u,v) of the system

CCZ;; ) +0® (u(t)) > Fy (t,u(t),v(t)) forae. t € (0,7)
(S) ‘C%’(t) — By (tu(t),v(t) forae. t € (0,T)

Blguozu(O)Sﬁl, BQSUOZU(O)SEQ, u® € dom (@), vy € HL (Q).

The reaction functionals F; : [0, +00) x L? () x L? (Q) — R?, i = 1,2, are debned for allt € [0, 7], all
(U, V) € L?(Q) x L?(22) and for a.e. x € Q, by

Fi (U V) (x) = fi(t,z,U (z),V (2)),
fl(taxvc ):’I’ (t x)th( ) (C) q1 (t ZC)
f2(t,6,¢") =ra(t) ©ha(€) - g2 (¢') + g2 (1) .

Moreover p. < u < 7y, p, < v < Py, and (%n, n) — (e @) weakly in L2 (0,T, L* () x
12(0,T, 12 ().

Furthermore, if @, (u}) — @ (u°), r;, — r; strongly in L? (0,7, L? (Q,R")), and ¢; , — ¢; strongly
in L2 (0,7, L*(Q)), then (%, dun) — (du dv) strongly in L2 (0,7, L2 (Q)) x L? (0, T, L? ().

Proof . All arguments of the proof of Theorem 3.1 remain the same, except those of Step 2. Therefore, we
only have to resume the proof of Step 2. Since we cannot use the strict convexity of ®; ,, = 0, the proof of
the relative compactness of E; = {v, (t) : n € N} in L? (Q) for t € (0, T] cannot be obtained by following
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the same arguments. The rest of the proof remains valid. We are going to estimate sup,,cy | Von (£) || 22(0)
by using Gronwall’s lemma, and will conclude to the compactness of E; with the compact embedding
HY(Q) < L?(Q).

A straightforward calculation gives

VF (60 0,00 () = |12 (1) 2 (30 () 2 (0 ()| W0, (1
+ {7’2 (t) © ha (un, (1)) - % (vn, (t))] Vo, (t) .
In the following we set
72 (0)© G2 (1 (6) g2 00 (0) = A (0)
72 () ha (un (1)) - 522 (0 6)) = B 1)

and XV := L? (Q,RY). From (Hs), the fact that hy and g belong to C}_ (R,R"), and (un,v,) €
[p,: 1] % [p,: Po] (see (3.6)), we deduce that sup,co 7y |A(¢) ] := A < +00 and sup,c(o. 77| B (t) | == B <
+00. Set V,, (t) := Vu, (t). Taking the distributional derivative with respect to the space variable of
each term of the second equation of (S,) and taking into account the previous calculation, we infer that

V,, solves the Cauchy problem

{ " (1) = A () Vun (£) + B (£) Vi (1) for ae. t € (0,T),

(0) Vop,
and belongs to C ([0, 7], X*) (see for instance [1, Theorem 2.1], with ® = 0 and F (¢, V) = A (t) Vu, (t)+
Bt)V,X =12 (Q,RN)). Hence, for all ¢t € (0,77,

Vo (t) = VO + / (A () Yy (5) + B (1) Vi (5)) ds,

from which we deduce

T t
Vi () [l < V025 + A / IV (5) L~ ds+ B / 1V (5) 1o ds.
0 0

According to Gronwall’s lemma, we infer that for all ¢ € (0,7] (note that s — ||V, (s) || x~ is continuous
in [0,77)

T
Ve (8) | xv < <||Vv2||XN +A/ IV (s) || x~ dS) exp (BT) .
0

From (H3)' and the fact that (u, (t)),en is bounded in H' (Q) for all ¢ € (0,T] (see Step 2 in the proof
of Theorem 3.1), we deduce from the estimate above that (Vuy, (£)), oy is bounded in H' (), which
completes the proof. I

5. STOCHASTIC HOMOGENIZATION OF TWO COMPONENTS REACTION DIFFUSION SYSTEMS

We place this section within the framework of stochastic homogenization introduced in [1]. In all that
follows, (E AP (T2), N) is a given discrete dynamical system, F denotes the o-algebra of invariant
sets of A by the group (T%.),.,~ and, for every h in the space Lp () of P-integrable functions, EXh
denotes the conditional expectation of h with respect to F (for the relevant definitions, we refer to [4]
or [2, Section 12.4] and references therein). We first specify the random diffusion part by recalling some
results obtained in [1, Section 5].

5.1. The random diffusion parts. Given a > 0 and 8 > 0, we denote by Conv,, g the class of functions
g : RV xRN 5 R, (z,€) = g (,8), satisfying conditions (D;), (D2), (D3), and (Dy). We equip Conv, s
with the o-algebra denoted by Tcgpy . trace of the product o-algebra of RRNXRN, i.e., the smallest
o-algebra on Conv, g such that all the evaluation maps

C(z,6) ' 8 —g ($7£), (x7€) € RN X RN

are measurable when R is endowed with its Borel o-algebra.
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For i = 1,2, we are given a random convex integrand W; : ¥ x RY x RY — R, ie., a A® B (RN) ®
B (RN ) B (R) measurable function such that for every w € X, the function W; (w, ., -), belongs to the
class Conv, . Since for all (7,£) € RY x RN, w — W, (w,z,€) is A — B(R) measurable, the map
W Y — Convy g, w — Wi (w,.,-), is A — TConv -measurable, and we denote by P its law, that is
P = W#P.

We assume that W; fulfills the following covariance property with respect to the dynamical system
(S, A, P, (T%.),cpn): forall z € ZV

Wi (Tow, x., &) = Wi (w,z + 2,€) for a.e. z € RY, for all ¢ € RY, and for P a.e. w € .

For all g in Convy g and all z € ZN, let us set T.g (z,-) = g (z + z,-). This defines a group (i) .
z€E

acting on the class Conv, g, and clearly, for all z € ZV, T, : Conv, 8 — Conv, g is TConv ,~measurable.
Then it is easy to show that the covariance property implies that the law P of WZ is invariant under
the group <Tz>zezN’ that is TZ#PZ- = Pi for all z € ZV. Each random function W; is referred as to be
periodic in law.

We write € to denote a sequence (g,,),,cy of positive numbers e, going to zero when n — +o0, and we

briefly write € — 0 instead of lim,,_, o €, = 0. For i = 1,2, we consider the following random functional
O, . : X x L?(Q) — RT U {400} defined by

x 1
W; (w, —, Vu dx—i—f/ a;u? dHNfl—/ oiudHy_1 ifue HH (Q),
;o (w,u) = /Q ( € ) 2 Joq 99 (

+o0 otherwise

where ;i € LHN L (09), a; € Lg7 . (092) with a; > 0 Hy 1 a.e. in 0Q, and o; > o3 on Ty C 9N with
Hy_1(T;) > 0 for some o; > 0. These functionals model random energies concerning various steady-
states situations, where the small parameter € accounts for the size of small and randomly distributed
heterogeneities in the context of a statistically homogeneous media.

Under above hypotheses on W with respect to the discrete dynamical system (E AP (T2), N) using
the subadditive ergodic theorem (]2, Theorem 12.4.3]), together with [1, Proposiion 4.1] we establish
that for P almost all w in X, the sequence of functional ®; . (w,-) Mosco-converges to the integral
functional @™ (w, ), ®hom 3 x L2 (Q) — R* U {+oc} where

1
/ Wihom (w,Vu) dz + 7/ aiuz dHn_1 — / piudHy—1 ifue H! (Q),
Q 2 o0 o0

+00 otherwise.

e>0

@?om (wv u) =

The density W™ is given, for P a.e. w € X, and for every a € RV, by

1
W™ (w,a) = lim inf {nN/ Wi (w,y,a+ Vu(y)) dy:u € H} (Y)}
nY

n—-+oo

1
_ . F - . 1
= nléle*E mf{nN/ Wi (w,y,a+ Vu(y)) dy:u € Hy (Y)},

where Y denotes the unit cell (0,1)". If (3, A, P, (T%),.7~) is ergodic, then W/*™ is deterministic and
given for P a.e. w € ¥ by

1
whom(a) = ngrfwinf{mv/yWi (w,y,a+ Vu(y) dy:u € Hy (Y)}
1
= n1€nf*E1nf{nN/YWi(w,y,aJrVu(y)) dy:u € H} (Y)}

For a proof we refer the reader to [2, Proposition 12.4.3, Theorem 12.4.7].

For P a.e. w € ¥, the subdifferential of ®; . (w,-) is the operator A; . (w) : L? (Q) — 2L*(Q) defined for
every w € X by

domA4; . (w)= {v cH' (Q): divD:W; (w, é, Vv) cL?(Q), aw+ divD:W; (w, é, Vv) -1 = ; on GQ}
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and, for all v € dom A4; . (w),
Ao (w)v = —divD:W; (w, o Vy) .

Similarly the subdifferential of ®#°™ (w,-) is the operator A"°™ (w): L? (Q) — 2L*(Q) defined for every
w € X by

dom AP (w) = {v € H' (Q) : divDW/™ (w, Vv), a;v + divDW/™ (w, Vv) - = ¢; on 99}
and, for all v € dom Al™ (w),
Alom () v = —divOW ™ (w, Vv) .
When W; is ergodic, then A°™ is deterministic and
Aoy = —divDe W™ (Vo) .

We recall that A"°™ (w) is the P-almost sure graph limit of the operator A, . (w), and that under a
suitable condition on the Fenchel conjugate of £ — W; (w, x, &), this limit is a P-almost sure pointwise
limit (see [2, Proposition 17.4.6]).

5.2. The random reaction parts. We are given a random TCSVR-functional, i.e., a pair (Fy, F») with
F; 0 Y x [0,+00) x L?(Q) x L? () — R%, i = 1,2 defined by F; (w,t,u,v) (z) = fi (w,t,2,u(z),v(x))
where
fi: 2 x[0,400) xRY xR xR =R

is a A® B(R) ® B(RY) @ B(R) — B(R) measurable function such that for P a.e. w € ¥, the map
(t,z,(,¢") = fi (w,t,2,¢, (") is a TCSVR-function associated with (r; (w,-), g:, hi, qi (w, ).

Furthermore, we make the following hypotheses on r; and ¢;: we assume that for all Bounded Borel
set B of RN, the real valued functions

w || (w, t, ) ||%2(B7Rl) for all ¢t € [0,T7,
w = H% (w7t7 ) “%2(3) for all t € [O7T]7

T 2
dg;
w / l (w,7,*) dr
0 dr L2(B)
T 2
dr;
w / ari (w,T,*) dr
0 dr L2(B,RY)

belong to Lp (X), and we assume that r and g, satisfy the covariance property with respect to the
dynamical system (E,.A, P, (Tz)zezN), i.e., that for all z € ZV, all t € [0, +0), a.e. x € RY and P a.e.
wE Y,

ri(w, t, x4+ 2) =1 (Tow, t,x),

gi (w,t,x 4+ 2) = q; (Tyw, t,x).

We set fie(w,t,2,(,¢) = f; (w,t, %,Q('), and define the functional F;. by F . (w,t,u,v) (z) =
fi (w,t, Zou(x),v (x)) Note that in the expression of condition (TCCP), the functions f;, 7;, p;, and
L, Y, p, may depend on w, and that F; . is a TCSVR-functional whose condition (T'TCCP) is exactly
that of (Fy, Fy), i.e., with f,, ¥,, p;, and £y, p,- Since y, and ; does not depend on ¢, condition (3.4)
is automatically satisfied. Condition (3.3) holds for P-a.s. w € ¥. More precisely, for P-a.s. w € ¥, we

have
/T dr; :
sup — (w,t, 7> dt < +o00,
= Jo |l dt e/l (aRy)
T T 2 3
limsup/ 44i (w,t, 7> dt < |Tmeas () E}-/ 44 (w,7,") dr| .
=0 Jo || dt €/ L2 o Ildr L2(Y)

For a proof of these two estimates, we refer the reader to [1, Lemma 5.1].
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5.3. Almost sure convergence to the homogenized system. Under above conditions, by combining
Theorem 3.1 together with the variational convergence of the sequence of random energies @, . specified
above, we intend to analyze the asymptotic behavior in C (0,7, L? (Q)) x C (0, T, L* (Q2)) of the solution
(ue (), ve (w)) of the random reaction-diffusion system when ¢ — 0:

duziw) (t) + Are (W) (ue (w,t)) = Fre (w,t,ue (w,t),ve (w,t)) for ae. t € (0,T),
drUiTEW) (t) + A2,e (w) (us (w7 t)) = FQ,E (wa t: Ue (wv t) ) Ve (w’ t)) for a.e. t € (O’ T) ’

Ue (w,0) = ud (W), ve (w,0) =22 (W), p; (W) Sue (W) <Py (W), p, (W) < ve (W) <Py (W),

a1 (w,t) + divD: Wy (w, =, Vau, (w,t)) -1 =1 on 0N for all ¢ € [0,T],

ave (w, t) + divDeWs (w, £, Ve (w,t)) - n = @2 on 09 for all ¢ € [0,T],

where we have made explicit the domain of the subdifferential of each functional ®; (w).

757

Theorem 5.1. For eachw € %, let us denote by(u. (w) ,v- (w)) the unique solution inC ([0, T, L? (Q2)) x
C ([0,T7, L? (2)) of the reaction-dilusion system (S. (w)). Assume that forP-a.s. w € &, (Ul (w) ;02 (w))
strongly converges to(u’ (w),v° (w)) in L? () and that sup, ®; . (7. (w,0)) < +oco. Then, for P-a.s.
w €%, (ue (w),ve (w)) uniformly converges inC (0,77, L? (2)) x C ([0, T], L* (£2)) to the unique solution
of the reaction-dilusion system

) (1) 4 AL (@) (0 (0.0) = B (.t (0,1) 0 (,0) for ae. 1€ (0,7)
dvd(;’) (1) + AR () (v (w, 1)) = FL (w, t,u (w, ) , v (w, 1)) for ae. t € (0,T)

(Shom (w)) B B
u(w,0) = v’ (W), v(w0) =" (W), p, (W) Su(w) <P (W), p, (W) <v(w) <Py (W),

aru (w,t) + divDeWhem (w, Vu (w, ) - n = @1 on 99 for all ¢ € [0, 77,

agv (w, t) + divDeWEo™ (w, Vo (w, t)) - = ¢ on 99 for all ¢ € [0, 7).
where Fl°™ is given by F/'™ (w, t,u,v) (z) = fFo™ (w,t,z,u (x) ,v (x)) with
1 (W, ,¢,¢) = 1 (w ) © by () - g1 () + a1 (w, 1),

2 (W, .6, ¢) = 13" (W, 1) © ha (€) - 92 (¢') + 65 (w, t)

7“'“”” (w,t) = EX / ri (w,t,y) dy |,
(0,n)N
" (w,t) =E / gi (w,t,y) dy
(0,n)N
Moreover, for P-a.e. w € ¥,

(dug (@) dv. (w)) . (du (@) duw)

dt 7 dt dt 7 dt
andy, (w,T) Su(w) <Y (w,T), y, (w,T) <v(w) <Yy (w, 7).

When the the dynamlcal systen(E AP, (T, )ZGZN) is ergodic, the initial conditions are deterministic,
ie., ul(w) = wu? and v (w) = 2 for P-as. w € ¥, together with p, 7, f., and f,, then (S"™) is

deterministic and the expectation operator must be replaced by the mathematical expectation operator in
formulas expressingr; and g;,.

) weakly in L* (0,7, L* () x L* (0,T, L* (2))

Proof . The proof is a straightforward consequence of Theorem 3.1, and [1, Lemma 5,2, Lemma 5.3]. !
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5.4. The case of a coupling between a random reaction-diffusion equation and a random
non diffusive reaction equation. We place ourselves within the framework of Section 4, and assume
that the random reaction functional F} fulfills the conditions of Section 5.2 and that fo does not depend
on the space variable. Theorem 5.2 below whose proof is a direct consequence of Theorem 4.1 and [1,
Lemma 5,2, Lemma 5.3], expresses the homogenized problem of the following random system:

due (w)
dt

(t) + Ae () (te (W, 1)) = F1e (W, T, ue (W, 1) ,ve (w,t)) for ae. t € (0,T),

dve (w)
dt

(t) = Fy (w, t,ue (w, 1), v (w, 1)) forae. t€(0,T),

te (w,0) = ud (W), ve (w,0) =22 (W), p; (W) Sue (W) <Py (W), p, (W) < ve (W) <Py (W),

arue (w,t) + divDe Wy (w, £, Ve (w,t)) - = o1 on 9Q for all t € [0, 7],

' e

Theorem 5.2. For eachw € %, let denote by(u. (w), v. (w)) the unique solution in C (0,77, L? (Q)) x
C ([0,T],L? () of the system (S (w)). Assume that for P-as. w € %, (u?(w),v?(w)) strongly
converges to (v’ (w),v° (w)) in L* () and that sup, ®. (n. (w,0)) < +oco. Then, for P-a.s. w € %,
(ue (w) , ve (w)) uniformly converges inC ([0, 7], L? (22)) x C ([0, T], L? (2)) to the unique solution of the
system

) (1) 4 41 (@) (0 (0,0) = FE (0, 1) 0 (,0) for ae. 1€ (0,7)
d“di”) (1) = P> (w,t,u (w, ) v (w,1)) for ae. te (0,T)

(Shom (OJ))
u(w,0) =u’ (W), v(w0) =" W), p, (W) Suw) <P (W), p,(W) <v(w) <Py W),

aru (w,t) + div DeWom (w, Vu (w,t)) - n = @1 on 9Q for all t € [0, 7],

where Fj*™ is given by Fom (w, t,u,v) (z) = from (w,t,z,u (z),v (x)) with
FO (@,1,¢,¢) = 17" (w, 1) © ha (¢) - 91 (C) + 4™ (w, ),

oM (10, 1) = B / r (o tyy) dy ) |
(o,n)N

@™ (w,t) = B / @ (w,t,y) dy
(0,H)~
Moreover, for P-a.e. w € ¥,
(d”f () dve (“)> — (d“ ) du M) weakly in L2 (0, T, L? (Q)) x L? (0,7, L* ()

dt 7 dt dt 7 dt
andy, (w,T) Su(w) <Y (W, 1), y, (., T) <v(w) <Yy (w, 7).

When the the dynamical systerT(Z, AP, (Tz)zezN) is ergodic, the initial conditions are deterministic,
e, (v (W), v (W) = (u2,2?) for P-ae. w € ¥, F, is deterministic together with p, p;, f., and f;, then
(S’wm) is deterministic and the expectation operator must be replaced by the mathematical expectation
operator in formulas expressingr; and g;.

5.5. Application to stochastic homogenization of a prey-predator model with saturation
effect. For each i = 1,2, we are given two function Wii in Conv,, g, where W, Wf do not depend
on , and two absolutely continuous functions o : [0, 7] — (0, +-00) for which there exist positive real

numbers o, o, and @y such that

ozli(t)zgli>0;
a; >af(t)>af >0.
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We also are given two absolutely continuous functions K+ : [0, 7] — (0, +-00) satisfying K (t)i >K*>0

for some positive real number K*, and two absolutely continuous functions a* : [0, 7] — (0, +o0) for
which there exist @* > 0 such that a* > a* (t) > 0.

We now consider the random environment described in [1, Section 5.3.2] with N = 2, where spher-
ical heterogeneities with radius e, whose centers are independently randomly distributed with a given
frequency A following a Poisson point process with intensity A. Recall that this random environment
is modeled by an ergodic dynamical system (E,A,P,\7 (Taj)zeRz) where T,w = w — z, and, for every
bounded Borel set B, and every k € N,

& €XD (—)\L’Q (B))
k!

so that Ey [#X N B] = A2 (B)®. Given R > 0, we define the random density W; associated with the
random diffusion part, by

Py (# (SN B) = k) = \'L%(B)

W (§) ifx e U Bp (i),
W’i (w7x7§) = i€N
Wt (&) otherwise.

Similarly we set

a; (t) ifze U Bp (wj),
@i (w,t,z) = jeN
+

o (t) otherwise.

K~ (t) ifx € | Br(w;),
Ki(w,t,z) = jeN
KT (t) otherwise.

a (t) if v € | ) Br (w;),
a(w,t,z) = JEN
a™ (t) otherwise.

+ +
Given two positive constants b and ¢, for P a.e. w € ¥, we assume that A* = % satisfies A > 4,

atag
and that Bli, 7y and 7 fulfill condition 2.5 with af, @i, af, @3 and @ respectively. Let us set
a; = maxgli, o = minali, and @y = rnin@zjE and consider the following system stemming from
Example 2.3
du, (w) Ue (w, 1)

— (t) — divDe W (w7 é, Vu,. (w,t)) = (w,t, g) ue (w,t) | 1—

—a (w, g) ve (w, 1) (1 — exp (—bue (w, 1))
for a.e. t € (0,7),
(S. (w)) dUiTiw) (t) — divD:Ws (w, é, Vo, (w,t)) = (w,t, g) ve (w,t) (1 —c
for a.e. t € (0,7,

ve (w, t) )

ue (w, t)

ue (w,0) = ul (@) € H' (2) 0. (0,0) = v (w) € HY(Q), p, < ul (@) <Py, 0< 0 (w) < P,

Ue (w,t) =0on 'y, DWWy (w, é,VuE (w,t)) -n=0o0n00Q\T,

Ve (w,t) =0 on 'y, DWWy (w, é,VvE (w,t)) -n=0o0n 9N\ Ts.

6We denote by E| the expectation operator corresponding to the probability measure P
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Then, according to Proposition 2.3 and Theorem 2.1, (S: (w)) possesses a unique solution in the space
C ([0,T],L? () x C ([0, T], L? (€2)) which satifies Py < Ue (w,+) <py and 0 < 0. (w) < py. Furthermore,
te (w) and v, (w) possess a right derivative at each ¢t € (0,T). The system models the evolution of
two species with density u. (w) and v, (w) of a prey and a predator respectively, whose birth growth
rate, maximum carrying capacity, and saturation effect, take two values at random depending on wether
the species reside in the environment made up of the union of small spheres of size £ or not (refer to
the comments of Example 2.3). The homogenized system is expressed in the Proposition below. It is
interesting to note that the effective growth rate a?"m of each two species is the mean value of «; with
respect to the product probability measure £2] (0, 1)2 ® P, while the effective maximum carrying capacity
Khom ig a function of the growth rate o and K, illustrating the interplay between the growth rate of the
prey and the maximum carrying capacity of the environment when the size of the spatial heterogeneities
is very small.

Proposition 5.1. Assume that the initial conditions are deterministic, and that (u?,v?) strongly con-
verges to (u”,v°) in L?(Q) and that sup, ®; . (. (w,0)) < +oo for P-a.s. w € X. Then, for P-a.s.
w € %, (ue,ve) uniformly converges inC ([0, 7], L? (2)) x C ([0, T], L* (2)) to the unique solution (u, v)
of the deterministic reaction-dilusion system

du

T )= D" (Tu(0) =™ 0 (0) (1~ i)

Khom (t)
—a ()" v (t) (1 — exp (—bu (t))) for a.e. t € (0,T),

dv

) @ (t) — divDWeom™ (Vo () = abo™ () v (t) (1 - cv(t)> fora.e. t € (0,7),

u (t)

uw(0)=u’ e H (), v(0) =" € H (), Blguogﬁh 0 <° < 7y,

u(t)=0on Ty, DFWP™(Vu(t))-n=0o0nd0\T,

v (t) =0 on Ty, DWH™ (Vo (t))-n =0 on 9\ Ty

where

/(0 12 i (- t,y) dy) =a; (t)+ (af (t) —a; (1)) exp (- R?) i=1,2;

Proof . We apply Theorem 5.1 with

12
fo (@,,2,¢,¢) = an (@, ,2) ¢’ — can (w, t,) %
¢

iet6.6) = )¢ (1= s ) — allotin) ¢ (1= exp (-b0)

DT 2 g (2,8 ¢ (1 — exp (<BC))

= o (w,t,2) ¢ — K (w,t,z)
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Then
hom A . _ aq ('1t7y) 2
e =n( [ ey a)oom( [ Gt
B[ altw) dy) ¢ (e (-K)
(0,1)?
E ) a1 (-,t,y) d
-F / ar(hty) dy | ¢ [ 1 (f(o’l) ) y)
(071)2 E (f(071)2 aq ('7ta y) dy>
B[ att) dy) ¢ e (-10)
(0,1)?
= alom (1) ¢ (1 - M) —am () ¢ (1 —exp (=bC)),
and
CIQ
flem(t, ¢, ¢) = Oégom(t)él—mgom(t)?
_ ahom (1) ¢! (1_02)_

It remains to compute a?°™, ™ and K"*™. Noticing that Jw € ¥ s. t. y € Uien Br (wi) =

1 9

# (XN Bg(y)) > 1, and using Fubini’s theorem, we infer that

Q;

hom

af (t)// Lg(snBry)=0 (W,y) dy dP (w) + a; (t)// Lg(snBry)=1 (W,y) dy dP (w)
= J(0,1)2 = J(0,1)2

af (t)/ /]l[#(ZﬂBR(y)):O] (w,y)dP (w) dy + a; (f)/ / Lig(snBry)=1] (W,y) dP (w)dy
(0,1)* /% 0,1)2J%

af (t)exp (—ATR?) +a; (t) ((1 —exp (—ATR?))).

i

A similar calculation holds for the computation of a°™ and K™ which completes the proof. !
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