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Abstract We study existence, uniqueness and other geometric properties of
the minimizers of the energy functional

kuk2Hs

(⌦)

+

Z

⌦

W (u) dx,

where kukHs

(⌦)

denotes the total contribution from ⌦ in the Hs norm of u
and W is a double-well potential. We also deal with the solutions of the related
fractional elliptic Allen-Cahn equation on the entire space Rn.

The results collected here will also be useful for forthcoming papers, where
the second and the third author will study the � -convergence and the density
estimates for level sets of minimizers.
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1 Introduction

In this paper we study existence, uniqueness, some qualitative properties and
related issues for the minimizers of a nonlocal energy functional involving a
Gagliardo-type norm.

Let ⌦ ✓ Rn be an open domain and denote by C⌦ its complement. We
deal with the functional F defined by

F (u,⌦) = K (u,⌦) +

Z

⌦

W (u) dx, (1)

where K (u,⌦) is given by

K (u,⌦) =
1

2

Z

⌦

Z

⌦

|u(x)� u(y)|2

|x� y|n+2s
dx dy +

Z

⌦

Z

C⌦

|u(x)� u(y)|2

|x� y|n+2s
dx dy, (2)

with s 2 (0, 1), and the functionW is a smooth double-well potential with wells
at +1 and �1; i.e., W is a non-negative function vanishing only at {�1,+1}.

The functional in (1) is a non-scaled Allen-Cahn-Ginzburg-Landau-type
energy with its kinetic term K given by some nonlocal fractional integrals, in
place of the classical Dirichlet integral. The energy K (u,⌦) of a function u,
with prescribed boundary data outside ⌦, can be view as the contribution in
⌦ of the (squared) Hs (semi)norm of u

Z

Rn

Z

Rn

|u(x)� u(y)|2

|x� y|n+2s
dx dy.

Nonlocal models involving the Hs norm are quite important in physics, since
they naturally arise from many problems that exhibit long range interactions
among particles.
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In the specific case in (1) with the potential W given by a double-well
function, an adequate scaling of the kinetic term K brings to the energy for
a liquid-liquid two-phase transition model of nonlocal type. A � -convergence
theory for such energy has been recently developed by two of the authors
in [22]. They show that suitable scalings of the functional F � -converge to
the standard minimal surface functional when s 2 [1/2, 1) and to the nonlocal
one when s 2 (0, 1/2). As in the classical case with the singular perturbation
given by the Dirichlet energy, the functional in (1) is strictly related to the
elliptic Allen-Cahn equation, which is of nonlocal character in this framework.

The nonlocal analogue of the Allen-Cahn equation is given by the following
Euler-Lagrange equation for the energy F (u) := F (u,Rn)

(��)su(x) +W 0(u(x)) = 0 for any x 2 Rn, (3)

As usual, for any s 2 (0, 1), (��)s denotes the s-power of the Laplacian
operator and, omitting a multiplicative constant c = c(n, s), we have

(��)su(x) = P.V.

Z

Rn

u(x)� u(y)

|x� y|n+2s
dy = lim

"!0

Z

CB
"

(x)

u(x)� u(y)

|x� y|n+2s
dy.

Here B"(x) denotes the n-dimensional ball of radius ", centered at x 2 Rn (and
the standard notation B" = B"(0) will be also used). “P.V.” is a commonly
used abbreviation for “in the principal value sense”. In the sequel, we will often
omit the P.V. notation in front of the integrals, for simplicity of notation.

In the same spirit of a celebrate De Giorgi conjecture about the level sets
of the solutions of the elliptic analogue of (3), it seems natural to study the
solutions u of (3) that satisfy the following two conditions:

@x
n

u(x) > 0 for any x 2 Rn (4)

and, possibly,

lim
x
n

!±1
u(x0, xn) = ±1, for any x0 2 Rn�1. (5)

We refer to [9,25,26,16,8,10,11] for several results in this direction. Here, by
means of a technical variation of the classical sliding method, we can prove that
the solutions of the fractional elliptic Allen-Cahn equation (3) that enjoy (4)
and (5) have also to satisfy a minimizing property for the functional F defined
in (1), as stated here below:

Theorem 1 Let s 2 (0, 1) and let u 2 C1(Rn) be a solution of

� (��)su(x) = W 0(u(x)), for any x 2 Rn. (6)

Suppose that

@x
n

u(x) > 0, for any x 2 Rn (7)

and

lim
x
n

!±1
u(x0, xn) = ±1, for any x0 2 Rn�1. (8)
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Then, for any r > 0, we have that

F (u,Br)  F (u+ �, Br) for any measurable � supported in Br. (9)

In the literature, (9) is generally referred by saying that u is a local minimizer

for F in the domain Br.
The proof of Theorem 1 follows a classical sliding argument (see, e.g.,

Lemma 9.1 in [27] and also [2] and [5] for a di↵erent variational approach for
the classical local functional), but we need here to operate some modifications
due to the non-locality of the fractional operators (��)s.

In the case of ⌦ being an open one-dimensional set, we will carefully char-
acterize such class of minimizers, showing that they are monotone increasing
and unique up to translations. Moreover, by further regularity assumptions on
the potential W , we have that the 1-D minimizers satisfy certain regularity
properties and then we will analyze their asymptotic behavior and the one of
their derivative (see Theorem 2 below). Precisely, we denote by

X =
�

f 2 L1

loc

(R) s.t. lim
x!±1

f(x) = ±1
 

(10)

the space of admissible functions and we suppose that the double-well potential
W belongs to C2(R) and satisfies

W 00(±1) > 0. (11)

Then, we prove the following theorem.

Theorem 2 Let F given by (1). Then there exists a unique (up to transla-

tions) nontrivial global minimizer u(0) 2 X of the energy F which is strictly

increasing. The minimizer u(0)

solves the equation (3) and is unique (up to

translations) also in the class of monotone solutions of (3). Moreover, u(0)

belongs to C2(R) and there exists a constant C � 1 such that

|u(0)(x)� sign (x)|  C |x|�2s
and

�

�

�

u(0)

�0
(x)
�

�  C |x|�(1+2s) (12)

for any large x 2 R.

As a further matter, exploiting Theorem 2, we will be able to construct a
minimizer in higher dimensions u⇤ and we will estimate the energy (1) of u⇤

on the ball BR, proving that, as R gets larger and larger, the contribution in
K (u⇤, BR) from CBR becomes negligible if s � 1/2, however when s < 1/2
this does not happen.

Precisely, we consider the functional G : X ! R[{+1} defined as follows

G (u) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

lim inf
R!+1

1

R1�2s
F (u, [�R,R]) if s 2 (0, 1/2),

lim inf
R!+1

1

logR
F (u, [�R,R]) if s = 1/2,

F (u,R) if s 2 (1/2, 1),

(13)
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where, for every I 2 R, F (·, I) is defined by (1). The functional G is given by
the natural scaling of the energy F , in the sense that, for any s 2 (0, 1), we
have that G (u(0)) is finite, where u(0) is the minimizer in Theorem 2. In this
respect, we say that the function u(0) is a global minimizer for F if G (u(0)) is
finite and u(0) is a local minimizer for F in any Br (see Section 4). Finally, it
is worth mentioning that the scaling in (13) also appears in the � -convergence
analysis in [22] (see, in particular, Theorem 1.2 and Theorem 1.3 there).

We extend u(0) to all the dimensions by setting, for any x 2 Rn (and n � 2),

u⇤(x) = u⇤(x
1

, . . . , xn) := u(0)($xn). (14)

where $ is a constant needed just to keep track of the dependence of (��)s

on the dimension, given by

$ :=
1

✓

Z

Rn�1

d⇣

(1 + |⇣|2)(n+2s)/2

◆

1
2s

. (15)

This constant1 also appears in [13] and [6].

We prove the following theorem.

Theorem 3 Let G be the 1-D functional defined by (13) and let u⇤
be defined

by (14). Then, for any r > 0, we have that

F (u⇤, Br)  F (u⇤ + �, Br) (16)

for any measurable � supported in Br.

Also, the following results hold as R ! +1.

(i) If s 2 (0, 1/2), then

c
1

 1

Rn�2s

Z

B
R

Z

CB
R

|u⇤(x)� u⇤(y)|2

|x� y|n+2s
dx dy  c

2

.

(ii) If s = 1/2, then

F (u⇤, BR)

Rn�1 logR
! b⇤ and

1

Rn�1 logR

Z

B
R

Z

CB
R

|u⇤(x)� u⇤(y)|2

|x� y|n+1

dx dy ! 0.

(iii) If s 2 (1/2, 1), then

F (u⇤, BR)

Rn�1

! b⇤ and

1

Rn�1

Z

B
R

Z

CB
R

|u⇤(x)� u⇤(y)|2

|x� y|n+2s
dx dy ! 0,

1 Of course, we could have kept track of the normalization constant $ in the definition
of the fractional Laplacian operator (instead of in (14)), so that (14) reduces to the sim-
pler u

⇤(x) = u

(0)(x
n

). However, we preferred this choice both for consistency with [20,21,
22] and because most of the computations here are not complicated at all by this setting.
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where c
1

and c
2

are positive constants and b⇤ =
!n�1

$
G (u(0)).

Moreover, there exists C > 0 such that for any R � 2 and � 2 (0, 1/2) we

have

F (u⇤, BR \B
(1��)R)  C�Rn�1. (17)

Finally, it is worth noticing that, in order to prove all the above cited
results, we need to perform careful computations on the strongly nonlocal
form of the functional F . Hence, it was important for us to understand some
modifications of the classical techniques to deal with the fractional energy
term, in particular to manage the contributions coming from far. Therefore,
in the Appendix we collect some general and independent results involving
the Gagliardo-type norm in (2), to be applied here and in [20,21,22], like
construction of barriers, compactness results and various estimates, as well as
regularity and limit properties for the solutions of equation (3).

We prove Theorem 1 in Section 2, Theorem 2 in Section 4, and Theorem 3
in Section 5. Some preliminary results on 1-D minimizers on intervals are
collected in Section 3.

2 Minimization by sliding - Proof of Theorem 1

In this section, we prove the minimization result via sliding method stated
in Theorem 1. First, we need the following lemma, in which we point out that
the problem of minimizing the energy in a given ball has a solution.

Lemma 1 Let R > 0 and uo : Rn ! R be a measurable function. Suppose

that there exists a measurable function ũ which coincides with uo in CBR and

such that F (ũ, BR) < +1. Then, there exists a measurable function u? such

that F (u?, BR)  F (v,BR) for any measurable function v which coincides

with uo in CBR.

Proof We take a minimizing sequence, that is, let uk be such that uk = uo

in CBR, F (uk, BR)  F (ũ, BR) and

lim
k!+1

F (uk, BR) = inf F (v,BR), (18)

where the infimum is taken over any v that coincides with uo in CBr. Then, (18)
and Lemma 10 give that, up to subsequence, uk converges almost everywhere
to some u?. Thus, the desired result follows from (18) and Fatou Lemma. ut

Now, we are in position to prove that every monotone solution of equation
(3), satisfying the limit condition (5), is a local minimizer for the corresponding
energy functional F .
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Proof (Proof of Theorem 1) We argue by contradiction. Suppose that there
exist r, co > 0 and � supported in Br such that F (u,Br)�F (u+�, Br) � co.

By choosing ũ = u+� in Lemma 1, we have that F (ũ)  co+F (u,Br) <
+1 and then we can take u? minimizing F (v,Br) among all the measurable
functions v such that v = u in CBr. Since we assumed by contradiction that
u is not a minimizer, then there exists P 2 Rn such that

u(P ) < u?(P ). (19)

By cutting at the levels ±1, which possibly makes F decrease, we see
that |u?|  1.

Moreover, by the minimizing property of u?,

(��)su?(x) +W 0(u?(x)) = 0 for any x 2 Br (20)

and then, by Lemma 5 in the Appendix and [12, Theorem 3.3], u? is continuous
up to the boundary of Br.2

We claim that
|u?| < 1. (21)

To check this, let us argue by contradiction and suppose that, say, u?(x̄) = +1,
for some x̄ 2 Rn.

Since |u| < 1 by our assumptions and u? = u in CBr, we have that x̄ 2 Br.
Then (20) and the fact that W 0(+1) = 0 would give that

Z

Rn

1� u?(y)

|x̄� y|n+2s
dy = 0.

Since the integrand is always nonnegative, u? must be identically equal to +1.
But this is in contradiction with the fact that u? = u in CBr, hence it
proves (21).

Now, we note that there is a first contact point in Br. Though this looks
quite obvious, we give full details for the reader’s convenience.

First, we claim that there exists k̄ 2 R such that,

if k � k̄, then u(x0, xn + k) � u?(x) for any x = (x0, xn) 2 Rn. (22)

Again, this looks quite straightforward, but we give a complete argument: we
argue by contradiction and we suppose that, for any k 2 N, there exists x(k) =

(x(k)0, x
(k)
n ) 2 Rn for which u(x(k)0, x

(k)
n + k) < u?(x(k)). Since u is monotone

and k � 0, it follows that u(x(k)) < u?(x(k)) and therefore x(k) 2 Br.

2 We observe that the solutions of (3) at every point are also viscosity solutions (according
to Definition 2.5 of [12]). Indeed, if v � u and v(x

o

) = u(x
o

), we have that

Z

Rn

v(y)� v(x
o

)

|x
o

� y|n+2s
dy �

Z

Rn

u(y)� v(x
o

)

|x
o

� y|n+2s
dy =

Z

Rn

u(y)� u(x
o

)

|x
o

� y|n+2s
dy.

Note also that the solutions in the distributional sense satisfy the comparison principle
and then they are solutions in the viscosity sense, too (see, e.g., [23, Section 2.2] and, in
particular, Proposition 2.2.6 there). This allows us to use the results of [12].
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Thus, up to subsequence, we suppose that

lim
k!+1

x(k) = x?,

for some x? in the closure of Br. Consequently, by (8),

+1 = lim
k!+1

u(x(k)0, x(k)
n + k)  lim

k!+1
u?(x

(k)) = u?(x?)  sup
B

r

u?.

Since this is in contradiction with (21), we have proved (22).

Then, by (22) and the monotonicity of u, we have that, if k > k̄, then u(x0, xn+
k) > u?(x) for any x = (x0, xn) 2 Rn. We take k̄ as small as possible with
this property, i.e., u(x0, xn + k) � u?(x) for any k � k̄ and any x 2 Rn,
and there exist an infinitesimal sequence ⌘j > 0 and points p(j) 2 Rn for

which u(p(j)
0
, p

(j)
n + k̄ � ⌘j)  u?(p(j)).

So, recalling (19), we have that u(P ) < u?(P )  u(P 0, Pn + k̄) and then
the monotonicity of u implies that

k̄ > 0. (23)

We claim that
p(j) 2 Br. (24)

Indeed, if p(j) belonged to CBr we would have that

u(p(j)
0
, p(j)n + k̄ � ⌘j)  u?(p

(j)) = u(p(j)).

Hence, by the monotonicity of u, we would have that k̄ � ⌘j  0 and so, by
taking the limit in j, that k̄  0. This is in contradiction with (23) and so (24)
is proved.

Then, by (24), we may suppose that lim
j!+1

p(j) = ⇣, for some ⇣ in the

closure of Br. As a consequence, the function w(x) := u(x0, xn + k̄) � u?(x)
satisfies w(x) � 0 for any x 2 Rn and w(⇣) = 0.

Thus, recalling (20), we have
Z

Rn

w(y)

|⇣ � y|n+2s
dy = �(��)sw(⇣)

= �(��)su(⇣ 0, ⇣n + k̄) + (��)su?(⇣)

= W 0(u(⇣ 0, ⇣n + k̄))�W 0(u?(⇣)) = 0.

Since the integrand is nonnegative, this implies that w vanishes identically,
and so

u(x0, xn + k̄) = u?(x).
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Taking into account the above equality, (23) and the strict monotonicity of u,
it yields that

u(x) < u?(x) for any x 2 Rn.

This is in contradiction with the fact that u and u? coincide in CBr and so
Theorem 1 is proved. ut

Remark 1 We note that hypothesis (7) of strictly monotony in one direction
in Theorem 1 may be relaxed as follows.

@x
n

u(x) � 0, for any x 2 Rn. (25)

Precisely, if we assume that the function W belongs to C2(R), we can prove
that the solutions of the Allen-Cahn equation (6) that satisfy (25) and (8) are
strictly increasing in one direction.

For this, we suppose by contradiction that @x
n

u(x̄) = 0, for some x̄ 2 Rn.
Then, by di↵erentiating in xn the equation in (6), we have that

�
Z

Rn

@x
n

u(y)

|x̄� y|n+2s
dy =

Z

Rn

@x
n

u(x̄)� @x
n

u(y)

|x̄� y|n+2s
dy

= (��)s@x
n

u(x̄)

= (��)s@x
n

u(x̄) +W 00�u(x̄)
�

@x
n

u(x̄) = 0.

In view of (25) the integrand is non-negative, and then we would obtain
that @x

n

u vanishes identically. This would give that u is constant along the
n-direction, which is in contradiction with (8). This proves that u satisfies (7).

3 Minimizing the energy on intervals

In this section, we deal with the problem of minimizing the energy F on
bounded intervals I in R.

The first result is in Lemma 2 below, in which we justify the existence of
a minimizer vI and we provide a lower bound for the corresponding energy
F (vI , I) with respect to the length of I (and depending on the fractional
power s).

By Lemma 2, together with some properties of the fractional Allen-Cahn
equation (3) proved in the Appendix, we will obtain an ulterior energy-estimate
for the minimizers vI with I = [0, R] and we will study their asymptotic
behavior as R goes to +1 (see Corollary 1 and Corollary 2).

Lemma 2 Let I = [a, b] ⇢ R be an interval with length |I| = b � a > 4.
Then, there exists a measurable function vI = v

[a,b] : R ! [�1,+1] such

that vI(x) = �1 if x  a, vI(x) = +1 if x � b and

F (vI , I)  F (vI + �, I)
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for any measurable function � supported in I.
Moreover,

F (vI , I)  ⇤(|I|) :=

8

>

<

>

:

Cs(1 + |I|1�2s) if s 2 (0, 1/2),

Cs(1 + log |I|) if s = 1/2,

Cs if s 2 (1/2, 1),

(26)

for a suitable constant Cs > 1 depending only on s.

Proof For any fixed interval I = [a, b] ⇢ R, we will prove the existence of the
function vI , by means of Lemma 1. Therefore, it su�ces to construct a suitable
competitor in [a, b].

In view of translations invariance, we may suppose that a < �2 and b > +2.
We consider the following function h : R! [�1, 1] defined by

h(x) :=

8

>

<

>

:

�1 if x  �1,

x if x 2 (�1,+1),

+1 if x � +1,

Let us compute each contribution in the energy F (h, I). In the following,
we will denote by Cs suitable positive quantities, possibly di↵erent from line
to line, and possibly depending on s.

First, since h(x) 2 {�1,+1} out of (�1, 1), we deduce

Z b

a

W (h(x)) dx =

Z

+1

�1

W (h(x)) dx  Cs,

Second, let us compute the contributions in the kinetic term K (h, I).

If s 2 (0, 1/2),

Z �1

a

Z b

+1

|h(x)� h(y)|2

|x� y|1+2s
dx dy = 4

Z �1

a

Z b

+1

dx dy

|x� y|1+2s
 Cs|I|1�2s.

If s = 1/2,

Z �1

a

Z b

+1

|h(x)� h(y)|2

|x� y|1+2s
dx dy = 4

Z �1

a

Z b

+1

dx dy

|x� y|2  Cs log |I|.

If s 2 (1/2, 1),

Z �1

a

Z b

+1

|h(x)� h(y)|2

|x� y|1+2s
dx dy = 4

Z �1

a

Z b

+1

dx dy

|x� y|1+2s
 Cs.

If s 2 (0, 1),

Z

+1

�1

Z

+1

�1

|h(x)� h(y)|2

|x� y|1+2s
dx dy =

Z

+1

�1

Z

+1

�1

|x� y|1�2s dx dy  Cs,
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Z

+1

�1

"

Z b

+1

|h(x)� h(y)|2

|x� y|1+2s
dy

#

dx =

Z

+1

�1

"

Z b

+1

|1� x|2

|x� y|1+2s
dy

#

dx  Cs

and
Z

+1

�1



Z �1

a

|h(x)� h(y)|2

|x� y|1+2s
dy

�

dx =

Z

+1

�1



Z �1

a

|x+ 1|2

|x� y|1+2s
dy

�

dx  Cs.

Now, we estimate the contribution coming from far in the energy:

Z Z

[a,b]⇥(C [a,b])

|h(x)� h(y)|2

|x� y|1+2s
dx dy 

Z Z

[�1,1]⇥(C [a,b])

4

|x� y|1+2s
dx dy

+

Z Z

[a,�1]⇥[b,+1]

4

|x� y|1+2s
dx dy

+

Z Z

[1,b]⇥(C (�1,a])

4

|x� y|1+2s
dx dy



8

>

<

>

:

Cs

�

1 + |I|1�2s
�

if s 2 (0, 1/2),

Cs

�

1 + log |I|
�

if s = 1/2,

Cs if s 2 (1/2, 1).

All in all,

F (h, I) 

8

>

<

>

:

Cs(1 + |I|1�2s) if s 2 (0, 1/2),

Cs(1 + log |I|) if s = 1/2,

Cs if s 2 (1/2, 1).

(27)

Consequently, we use Lemma 1 to obtain that there exists the desired func-
tion vI such that vI(x) = h(x) if x 2 C [a, b] and F (vI , I)  F (vI + ', I)
for any measurable ' supported in I. The estimate in (26) plainly follows
from (27). ut

Corollary 1 Let the notation of Lemma 2 hold. Then, fixed any ` > 0, there
exists a function ↵` : (0,+1) ! (0,+1) such that

lim
R!+1

↵`(R) = 0

and

F (v
[0,R]

, [�`, `])  F (v
[0,R]

+ �, [�`, `]) + ↵`(R). (28)

for any measurable function � supported in [�`, `].

Proof The main idea is scaling the minimizer in [�`, R + `] in order to get a
suitable competitor and then computing. Let

zR(x) := v
[�`,R+`]

✓

(R+ 2`)x

R
� `

◆

.
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We observe that zR(x) = �1 if x  0 and zR(x) = +1 if x � R. Therefore, by
the minimality of v

[0,R]

, we get

F (v
[0,R]

, [0, R])  F (zR, [0, R]). (29)

Now, by scaling the variable of integration, we obtain

F (zR, [0, R])

=

✓

R

R+ 2`

◆

1�2s
"

1

2

Z Z

[�`,R+`]⇥[�`,R+`]

|v
[�`,R+`](x)� v

[�`,R+`](y)|2

|x� y|1+2s
dx dy

+

Z Z

[�`,R+`]⇥(C [�`,R+`])

|v
[�`,R+`](x)� v

[�`,R+`](y)|2

|x� y|1+2s
dx dy

#

.

+

✓

R

R+ 2`

◆

Z R+`

�`
W
�

v
[�`,R+`](x)

�

dx


✓

R

R+ 2`

◆

1�2s

F (v
[�`,R+`], [�`, R+ `]). (30)

Now, we set

�`(R) :=

8

>

>

>

<

>

>

>

:

0 if s 2 (0, 1/2],

Cs

"

✓

R

R+ 2`

◆

1�2s

� 1

#

if s 2 (1/2 , 1),

where Cs is the constant introduced in (26). Notice that lim
R!+1

�`(R) = 0.

In view of Lemma 2, we see that (30) becomes

F (zR, [0, R])  F (v
[�`,R+`], [�`, R+ `])

+

"

✓

R

R+ 2`

◆

1�2s

� 1

#

F (v
[�`,R+`], [�`, R+ `])

 F (v
[�`,R+`], [�`, R+ `]) + �`(R). (31)

Hence, combining (31) with (29), we obtain, for any fixed ` > 0,

F (v
[0,R]

, [0, R])  F (v
[�`,R+`], [�`, R+ `]) + �`(R). (32)

Now, we claim that, for any fixed ` > 0 there exists a function �` :
(0,+1) ! (0,+1) such that �`(R) ! 0 as R ! +1 and

F (v
[0,R]

, [0, R]) = F (v
[0,R]

, [�`, R+ `])� �`(R). (33)
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Indeed, since v
[0,R]

(x) = �1 for any x  0 and v
[0,R]

(x) = +1 for any x � R,
we have

F (v
[0,R]

, [�`, R+ `])� F (v
[0,R]

, [0, R])


Z Z

[�`,0]⇥[R,+1)

4

|x� y|1+2s
dx dy +

Z Z

[R,R+`]⇥(�1,�`]

4

|x� y|1+2s
dx dy

 �`(R),

with

�`(R) :=

8

>

>

>

>

<

>

>

>

>

:

4 log

✓

1 +
2`

R

◆

if s = 1/2,

2

s(1� 2s)

⇣

(R+ 2`)1�2s �R1�2s
⌘

if s 6= 1/2.

This gives (33).

From (32) and (33), together with the minimality of the function v
[�`,R+`],

it follows that

F (v
[0,R]

, [�`, R+ `])� �`(R)� �`(R)  F (v
[0,R]

+ �, [�`, R+ `]). (34)

Now, we use the fact that � is supported in [�`, `] to obtain

F (v
[0,R]

+ �, [�`, R+ `])� F (v
[0,R]

+ �, [�`, `])

=
1

2

Z Z

[`,R+`]⇥[`,R+`]

|v
[0,R]

(x)� v
[0,R]

(y)|2

|x� y|1+2s
dx dy

+

Z Z

[`,R+`]⇥(C [�`,R+`])

|v
[0,R]

(x)� v
[0,R]

(y)|2

|x� y|1+2s
dx dy +

Z

[`,R]

W (v
[0,R]

(x)) dx

= F (v
[0,R]

, [�`, R+ `])� F (v
[0,R]

, [�`, `]).

By plugging this identity into (34), we obtain the desired result, with ↵`(R) :=
�`(R) + �`(R). ut

Corollary 2 Let the notation of Lemma 2 hold. Then the function v
[0,R]

con-

verges to �1 locally uniformly as R goes to +1.

Proof By minimality, the function v
[0,R]

is a solution of

�(��)sv
[0,R]

(x) = W 0(v
[0,R]

(x)) for any x 2 [0, R].

Then, in view of Lemma 5 and [12, Theorem 3.3], v
[0,R]

is uniformly continuous
on the whole of R with modulus of continuity bounded independently of R
(recall the footnote on page 7). Hence, there exists a function v such that, up
to subsequences, v

[0,R]

! v as R ! +1 locally uniformly in R. Moreover, by
taking into account Lemma 7, the limit function v satisfies

� (��)sv(x) = W 0(v(x)) for any x 2 [0,1). (35)
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Also,
v(x) = �1 for any x 2 (�1, 0]. (36)

We claim that actually

v is a minimizer in the whole of R, (37)

i.e., for any ` > 0,

F (v, [�`, `])  F (v + �, [�`, `])

for any perturbation � supported in [�`, `].
This fact follows by Corollary 1. Indeed, we notice that

|v
[0,R]

(x)� v
[0,R]

(y)|2

|x� y|1+2s
dx  4

|x� y|1+2s

and we have
Z Z

[�`,`]⇥(C [�2`,2`])

4

|x� y|1+2s
dx dy

=

8

<

:

4

s(1� 2s)

⇥

(3`)1�2s � `1�2s
⇤

s 6= 1/2,

8 ln 3 s = 1/2
< +1.

Then the function
4

|x� y|1+2s
belongs to L1

�

[�`, `]⇥ (C [�2`, 2`])
�

and so, by

the Dominated Convergence Theorem

lim
R!+1

Z Z

[�`,`]⇥(C [�2`,2`])

|v
[0,R]

(x)� v
[0,R]

(y)|2

|x� y|1+2s
dx dy

=

Z Z

[�`,`]⇥(C [�2`,2`])

|v(x)� v(y)|2

|x� y|1+2s
.

This and the uniform convergence of v
[0,R]

to v imply that

lim
R!+1

1

2

Z Z

[�`,`]⇥[�`,`]

|v
[0,R]

(x)� v
[0,R]

(y)|2

|x� y|1+2s
dx dy

=
1

2

Z Z

[�`,`]⇥[�`,`]

|v(x)� v(y)|2

|x� y|1+2s
dx dy ,

lim
R!+1

Z Z

[�`,`]⇥(C [�`,`])

|v
[0,R]

(x)� v
[0,R]

(y)|2

|x� y|1+2s
dx dy

=

Z Z

[�`,`]⇥(C [�`,`])

|v(x)� v(y)|2

|x� y|1+2s
dx dy

and lim
R!+1

Z `

�`
W (v

[0,R]

(x)) dx =

Z `

�`
W (v(x)) dx.
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This implies that

lim
R!+1

F (v
[0,R]

, [�`, `]) = F (v, [�`, `])

and the same holds for the function v
[0,R]

+ �, i.e.,

lim
R!+1

F (v
[0,R]

+ �, [�`, `]) = F (v + �, [�`, `]).

Then, by taking the limit as R ! +1 in (28), the claim in (37) plainly follows.

Finally, by (37) we see that (35) holds for any x 2 R. This and (36) yield
that the function v is identically �1. ut

Next results may be seen as energy decreasing rearrangements with more
elementary techniques with respect to the ones in [18] (see also [7] for more
general integral inequalities).

Lemma 3 Given a measurable set ⌦ and two measurable functions u, v :
⌦ ! R. Then

F (min{u, v},⌦) + F (max{u, v},⌦)  F (u,⌦) + F (v,⌦) (38)

and the equality holds if and only if

u(x)  v(x) or v(x)  u(x) for any x 2 ⌦. (39)

Proof Denote by

m(x) := min{u(x), v(x)} and M(x) := max{u(x), v(x)}. (40)

Then, we may deduce the claim in (38)-(39) by the following fact. For any x,
y 2 ⌦,

|m(x)�m(y)|2 + |M(x)�M(y)|2  |u(x)� u(y)|2 + |v(x)� v(y)|2

and if equality holds then

�

u(x)� v(x)
��

u(y)� v(y)
�

� 0. (41)

This is straightforward to check and we leave the details to the reader. ut

Corollary 3 Let the notation of Lemma 2 hold. Then, vI is non-decreasing.
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Proof First, we remark that for any function w and z such that w = z outside
⌦0 ✓ ⌦, we have

F (w,⌦)� F (z,⌦) = F (w,⌦0)� F (z,⌦0). (42)

Now, for any ⌧ > 0, we let

u(x) := vI(x) and v(x) := vI(x+ ⌧)

and we recall the setting in (40). We have that

M(x) = �1 if x  a� ⌧ and M(x) = +1 if x � b� ⌧ . (43)

Therefore, we can apply (42), with w := M and z := v in ⌦0 := [a� ⌧, b� ⌧ ] ✓
⌦ := [a� ⌧, b], and we get

F (M, [a� ⌧, b])� F (v, [a� ⌧, b])

= F (M, [a� ⌧, b� ⌧ ])� F (v, [a� ⌧, b� ⌧ ]) � 0, (44)

where we also used the minimality of vI .

Analogously, since

m(x) = �1 if x  a and m(x) = +1 if x � b,

we get

F (m, [a� ⌧, b])� F (u, [a� ⌧, b]) � 0. (45)

Consequently, by (44) and (45), we conclude that

F (m, [a� ⌧, b]) + F (M, [a� ⌧, b]) � F (u, [a� ⌧, b])� F (v, [a� ⌧, b).

Since we know that the reverse inequality holds true as well, due to Lemma 3,
we obtain that

F (m, [a� ⌧, b]) + F (M, [a� ⌧, b]) = F (u, [a� ⌧, b]) + F (v, [a� ⌧, b]).

Therefore, by (39), we have that u � v does not change sign, hence vI is
monotone. ut
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4 The 1-D minimizer - Proof of Theorem 2

We are ready to deal with the 1-D minimizers (for related observations when
s 2 (1/2, 1) see [17] and [19]).

Proof (Proof of Theorem 2) For the sake of simplicity, we define the auxiliary
set of functions M in X as follows

M =
n

u 2 X s.t. G (u) < +1 and F (u, [�a, a])  F (u+ �, [�a, a])

for any a > 0 and any � measurable and supported in [�a, a]
o

(46)

and we divide the proof in few steps.

Step 1. Claim: the set M is non-empty.

We will prove this claim by taking the limit of a suitable sequence of
functions in X .

For any K > 2, we may use Lemma 2 with a = �K and b = K and we
obtain a minimizer v

[�K,K]

: R ! [�1, 1] such that v
[�K,K]

(x) = �1 if x  0
and v

[�K,K]

(x) = +1 if x � K. Also,

F (v
[�K,K]

, [�K,K]) 

8

>

<

>

:

Cs

�

1 + (2K)1�2s
�

if s 2 (0, 1/2),

Cs

�

1 + log (2K)
�

if s = 1/2,

Cs if s 2 (1/2, 1),

(47)

for a suitable constant Cs > 0.
Also, we recall that, in view of Corollary 3, the function v

[�K,K]

is mono-
tone non-decreasing.

The minimization property of v
[�K,K]

yields that

Z

R

v
[�K,K]

(y)� v
[�K,K]

(x)

|x� y|1+2s
dy = �(��)sv

[�K,K]

(x)

= W 0(v
[�K,K]

(x)), 8x 2 [�K,K], (48)

and so, by Lemma 5 and [12, Theorem 3.3], we have that v
[�K,K]

is continuous,
with modulus of continuity bounded independently of K.

Now, we fix a point co 2 (�1, 1) such that

W 0(co) 6= 0. (49)

By continuity, there must be a point pK 2 [�K,+K] such that v
[�K,K]

(pK) =
co.

We claim that

lim
K!+1

K � |pK | = +1. (50)
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To check this, we suppose by contradiction that there exists a constant C >
0 such that |pK + K|  C for infinitely many K’s. We denote by p =
lim

K!+1
(pK +K) and we consider the function v

[0,2K]

(x) = v
[�K,K]

(x�K).

Notice that, according to Corollary 2, v
[0,2K]

converges locally uniformly
to �1 as K ! +1. Besides, for any x > p, we have

v
[0,2K]

(x) = v
[�K,K]

(x�K) � v
[�K,K]

(pK) = co, (for large K)

that implies

lim
K!+1

v
[0,2K]

(x) � co > �1

and thus we get a contradiction. This proves (50).

Now, we set

uK(x) := v
[�K,K]

(x+ pK),

so uK(0) = co. As a consequence, we may suppose that uK converges locally
uniformly to some u⇤ 2 C(R; [�1,+1]), with

u⇤(0) = co (51)

and

u⇤ is non-decreasing. (52)

By (48) and Lemma 7,

(��)su⇤(x) +W 0(u⇤(x)) = 0 for any x 2 R. (53)

This and Lemma 6 imply that u⇤ 2 C2(R). From (52), we already know
that u0

⇤ � 0, and then, by arguing as in Remark 1, one can prove that

u0
⇤(x) > 0 for any x 2 R. (54)

Now, we prove that

G (u⇤) < +1. (55)

Indeed, by (47), we get

F (uK , [pK �K, pK +K]) = F (v
[�K,K]

, [�K,+K])



8

>

<

>

:

Cs

�

1 + (2K)1�2s
�

if s 2 (0, 1/2),

Cs

�

1 + log (2K)
�

if s = 1/2,

Cs if s 2 (1/2, 1),

This, (50) and Fatou Lemma imply (55).

Moreover, u⇤ is such that

lim
x!±1

u⇤(x) = ±1. (56)
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We can prove (56) arguing by contradiction. By (54), we know that there
exists a�, a+ such that

�1  a� < a
+

 +1

and
lim
x!1

u⇤(x) = a±.

Let us show that a� = �1. Suppose, by contradiction, that

a� > �1. (57)

Then, we set a⇤ := (a� + a
+

)/2 2 (�1, a
+

) and we infer from (57) that

i := inf
[a⇤,a+]

W > 0.

Recalling (52), we have that there exists  2 R such that, if x � , then u⇤(x) 2
[a⇤, a+]. So, from (55),

+1 > G (u⇤)

� lim
R!+1

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

R2s�1

Z R



W (u⇤) dx if s 2 (0, 1/2)

(logR)�1

Z R



W (u⇤) dx if s = 1/2
Z R



W (u⇤) dx if s 2 (1/2, 1)

� lim
R!+1

i (R� )

8

>

<

>

:

R2s�1 if s 2 (0, 1/2)

(logR)�1 if s = 1/2

1 if s 2 (1/2, 1)

= +1,

and this contradiction proves that a� = �1. Analogously, one proves that a
+

=
+1. This finishes the proof of (56).

By (56) and Theorem 1, we obtain that

F (u⇤, [�a, a])  F (u⇤ + �, [�a, a])

for any a > 0 and any � measurable and supported in [�a, a] .
(58)

By collecting the results in (55), (56) and (58), we obtain that the set M
is not empty.

Now, for any xo 2 R, define the set

M (x
o

) :=
�

u 2 M s.t. xo = sup{t 2 R s.t. u(t) < 0}
 

. (59)

Step 2. Claim: the set M (x
o

) consists of only one element, which will be de-
noted by u(x

o

), and u(x
o

)(x) = u(0)(x� xo).
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Now, we prove that there exists x⇤ 2 R such that

M (x⇤) has only one element. (60)

For this, we consider the previously constructed minimizer u⇤ and we take x⇤ 2
R such that u⇤ 2 M (x⇤). Let us take u 2 M (x⇤). By cutting at the levels ±1,
we see that |u|  1. Thus, for any fixed " > 0, there exists k(") 2 R such that,
for k 2 (�1, k(")], we have

u(x� k) + " > u⇤(x) for any x 2 R.

Now we take k as large as possible with the above property; that is, we take k"
such that

u(x� k") + " � u⇤(x) (61)

for any x 2 Rn and, for any j � 1 there exist a sequence ⌘j," � 0 and
points xj," 2 R such that

lim
j!+1

⌘j," = 0

and u(xj," � (k" + ⌘j,")) + "  u⇤(xj,").
We observe that xj," must be a bounded sequence in j. Otherwise, if

lim
j!+1

xj," = ±1,

then

±1 + " = lim
j!+1

u(xj," � (k" + ⌘j,")) + "  lim
j!+1

u⇤(xj,") = ±1,

which is a contradiction.
Therefore, we may suppose that

lim
j!+1

xj," = x",

for some x" 2 R. By (53) and by Lemma 5, we know that u and u⇤ are
continuous (recall 20), therefore

u(x" � k") + " = u⇤(x"). (62)

Thus, if we set
u"(x) := u(x� k") + ",

we have that u" � u⇤, u"(x") = u⇤(x") and, by (53),

�(��)su"(x) = �(��)su(x� k") = W 0(u(x� k")) = W 0(u"(x)� ").

Consequently,

0 
Z

R

(u" � u⇤)(y)

|x" � y|1+2s
dy = �(��)s(u" � u⇤)(x")

= W 0(u⇤(x")� ")�W 0(u⇤(x")). (63)
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Now, we claim that
|x"| is bounded. (64)

Indeed, suppose that, for some subsequence,

lim
"!0

+
|x"| = +1.

Then,
lim
"!0

+
u⇤(x") = ±1. (65)

By taking into account hypothesis (11) on the potential W , we have that

W 0(t) � W 0(r) + c(t� r) when r  t, r, t 2 [�1, �1 + c] [ [+1� c, +1],
(66)

for some c > 0. Then, by (65) there exists "o > 0 such that both u⇤(x")

and u⇤(x")�" belong, for " 2 (0, "o), to [�1, �1+c][[+1�c, +1], where c > 0
is the one given by (66). It follows

W 0(u⇤(x")) � W 0(u⇤(x")� ") + c" > W 0(u⇤(x")� "),

and this is in contradiction with (63). Thus (64) is proved.
As a consequence, we may suppose, up to subsequences, that

lim
"!0

+
x" = xo, (67)

for some xo 2 R.
We also have that

|k"| is bounded. (68)

Indeed, if
lim
"!0

+
k" = ±1,

we would obtain from (62) and (67) that

⌥1 = lim
"!0

+
u(x" � k") + " = lim

"!0

+
u⇤(x") = u⇤(xo),

and so, from (53),

0 = W 0(u⇤(xo)) = �(��)su⇤(xo) =

Z

R

u(y)± 1

|xo � y|1+2s
dy.

Since the integrand is either non-negative or non-positive, it follows that u⇤ is
identically equal to ±1, which is a contradiction. This proves (68).

Accordingly, we may suppose that

lim
"!0

+
k" = ko,
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for some ko 2 R. Hence,

lim
"!0

+
(u" � u⇤)(y) = lim

"!0

+
u(y� k") + "� u⇤(y) = u(y� ko)� u⇤(y), 8y 2 R,

and so, passing to the limit in (63), we conclude that
Z

R

u(y � ko)� u⇤(y)

|x" � y|1+2s
dy = 0. (69)

On the other hand, by passing to the limit in (61), we see that u(x�ko) � u⇤(x)
for any x 2 R, that is, the integrand in (69) is non-negative. Consequently,

u⇤(x) = u(x� ko) for any x 2 R. (70)

We claim that
ko = 0. (71)

To check this, we argue as follows. Since u belongs to M (x⇤), we have that

if u(x) < 0 then x  x⇤,

and that

there exists an infinitesimal sequence "j > 0 such that u(x⇤ � "j) < 0.

Hence, by (70),
if u⇤(x) < 0 then x  x⇤ + ko (72)

and

there exists an infinitesimal sequence "j > 0 such that u⇤(x⇤ + ko � "j) < 0.
(73)

On the other hand, since u⇤ 2 M (x⇤), we have that

if u⇤(x) < 0 then x  x⇤ (74)

and

there exists an infinitesimal sequence �j > 0 such that u⇤(x⇤ � �j) < 0. (75)

By (73) and (74), we have that x⇤ + ko � "j  x⇤ and so, by passing to the
limit, ko  0. But, from (72) and (75), we have that x⇤ � �j  x⇤ + ko, that
is, again by passing to the limit, ko � 0.

The observations above prove (71), that is ko = 0. Then, from (70) and (71),
we have that u = u⇤, and this proves (60).

From (60) we can easily deduce that the set M (x
o

) consists of only one
element, for any xo 2 R.

Take any u 2 M (x
o

) and set ũ(x) = u(x+(x⇤�xo)) for every x 2 R. Since
such translate function ũ belongs to M (x⇤), it follows that ũ ⌘ u⇤. Accordingly,
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u 2 M (x
o

) is such that u(x) = u⇤(x� (x⇤ � xo)); i.e., M (x
o

) consists of only
one element. By the arbitrariness of xo 2 R, the claim in Step 2 is proved.

Step 3. Claim: u(0) 2 C2(R) is such that (u(0))0(x) > 0 for any x 2 R and
M (x0) ⌘ {u 2 M s.t. u(xo) = 0}.

First, in view of (53) and the regularity assumptions on the function W ,
by Lemma 6 we can deduce that u(0) belongs to C2(R). Moreover, we know
from the previous step that M (0) only consists of one element and, in the
proof of the claim in Step 1, we built one with positive derivative (recall (54)).
In particular such u(0) is continuous and strictly monotone increasing.

Finally, we observe that, in view of the previous steps, the minimum u(0)

satisfies the hypothesis in Proposition 3 and then the estimates in (12) plainly
follow.

The proof of Theorem 2 is complete. ut

Remark 2 Existence of global minimizers in the case s 2 (1/2, 1).
We note that when s 2 (1/2, 1) the functional G coincides with F on X .

Hence, in view of Theorem 1 and the fact that global minimizers of F are so-
lutions of the equation (3), we can provide an alternative proof of the existence
result in Theorem 2, by showing the existence of a monotone global minimizer
which satisfies the limit condition (8). We will prove that the following infimum

�
1

:= inf

⇢

G (v), v : R! R s.t. lim
x!±1

v(x) = ±1

�

(76)

is achieved by an non-decreasing function.
The key of the proof is given by the fact that the energy functional G is

decreasing with respect to monotone rearrangements. The proof is adapted
from [3, Theorem 2.4], in which the authors deals with a nonlocal functional
deriving from Ising spin systems.

First, we recall that the energy G is also decreasing under truncations by
�1 and +1 and then it is not restrictive to minimize the problem (76) with
the additional condition |u|  1.

We denote by X the class of all v : R! [1, 1] such that lim
x!±1

v(x) = ±1;

we denote by X? the class of v 2 X such that v is non-decreasing and v(0) = 0.

We claim that the infimum of G on X is equal to the infimum of G on X?.

In fact, since X? ⇢ X we have inf
v2X?

G (v) � inf
v2X

G (v), while the reverse in-

equality follows mainly by the fact that the singular perturbation term in the
energy G is decreasing under monotone rearrangements; see for instance [4,
Theorem 9.2] (and also [1, Theorem 2.11]) and [18, Theorem I.1] for mono-
tonicity on the real line and on bounded intervals, respectively.
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Now, we are in position to show that the infimum of G on X? is achieved,
by the direct method.

Take a minimizing sequence (un) ⇢ X?. Since un is non-decreasing and
converging to �1 and +1 at ±1, its distributional derivative u0

n is a positive
measure on R with ku0

nk = |Dun(R)| = 2 < +1, 8n 2 N. Then there exist
u⇤ 2 BV

loc

(R) and a subsequence (un
k

) such that un
k

converges to u⇤ almost
everywhere as k goes to +1 (see for instance [14, Helly’s First Theorem]). By
construction, u is non-decreasing and satisfies u⇤(x) = 0.

Let us show that lim
x!±1

u⇤(x) = ±1.

Since u⇤ is non-decreasing in [�1, 1], there exist a < 0 and b > 0 such that

lim
x!�1

u⇤(x) = a and lim
x!+1

u⇤(x) = b.

By contradiction, we assume that either a 6= �1 or b 6= 1. Then, since W is
continuous and strictly positive in (�1, 1), we obtain

Z

R

W (u⇤) dx = +1.

This is impossible, because, by Fatou’s Lemma, we have

Z

R

W (u) dx  lim inf
n!+1

Z

R

W (un) dx  lim inf
n!+1

G (un) < +1. (77)

Hence, u⇤ belongs to X?.

Finally, since G is lower semicontinuous on sequences such that un ! u⇤
pointwise, the minimum problem �

1

has a solution and this concludes the
proof.

It is worth mentioning that an ulterior proof of the existence of minimizers
for (76) can be found in [17], where it was studied the 1-D functional F̃ given
by

F̃ (u) =

Z

R

Z

R

|u(x)� u(y)|p

|x� y|p dx dy +

Z

R

W (u) dx, (p > 2).

Our case is analogous if we take p = 1 + 2s 2 (2, 3), since the exponent of
the term |u(x)� u(y)| does not play any special role in the proof (see [17,
Proposition 3.3]).

5 Extending the 1-D minimizer to any dimension - Proof of
Theorem 3

We start by proving the following lemma, which we will need in the proof of
Theorem 3:
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Lemma 4 Let K � 0. Let ↵ : R ⇥ [1,+1) ! [0,K] and � : R ! [0,+1).
Suppose that ↵(·, R) is measurable for any fixed R 2 [1,+1) and that � is

measurable.

Let also �R 2 (0,+1) for any R 2 [1,+1).
Assume that

for any ⌘ 2 (0, 1), lim
R!+1

�R
�⌘R

= 1, (78)

for any ⌘ 2 (0, 1), lim
R!+1

sup
|t|⌘R

↵(t, R) = 0, (79)

for any R � K, �R

Z R

�R

�(t) dt  K, (80)

and lim inf
R!+1

�R

Z R

�R

�(t) dt = c, (81)

for some c 2 R. Then

lim inf
R!+1

�R

Z R

�R

↵(t, R)�(t) dt = 0.

Proof We fix ⌘ 2 (0, 1) and we use (81) and (78) to see that

c = lim inf
R!+1

�R

Z R

�R

�(t) dt

= lim inf
R!+1

 

�R

Z ⌘R

�⌘R
�(t) dt+ �R

Z

{⌘R<|t|R}
�(t) dt

!

� lim inf
R!+1

�R

Z ⌘R

�⌘R
�(t) dt+ lim inf

R!+1
�R

Z

{⌘R<|t|R}
�(t) dt

= lim inf
R!+1

�⌘R

Z ⌘R

�⌘R
�(t) dt+ lim inf

R!+1
�R

Z

{⌘R<|t|R}
�(t) dt

= c+ lim inf
R!+1

�R

Z

{⌘R<|t|R}
�(t) dt.

As a consequence, by simplifying c,

0 � lim inf
R!+1

�R

Z

{⌘R<|t|R}
�(t) dt.

So, since the integrand is non-negative,

lim inf
R!+1

�R

Z

{⌘R<|t|R}
�(t) dt = 0. (82)
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Now, we use (80), (82) and (79) to conclude that

lim inf
R!+1

�R

Z R

�R

�(t)↵(t, R) dt

 lim inf
R!+1

"

sup
|⌧ |⌘R

↵(⌧, R) �R

Z ⌘R

�⌘R
�(t) dt+K�R

Z

{⌘R<|t|R}
�(t) dt

#

 lim inf
R!+1

"

K sup
|⌧ |⌘R

↵(⌧, R) +K�R

Z

{⌘R<|t|R}
�(t) dt

#

= lim
R!+1

K sup
|⌧ |⌘R

↵(⌧, R) + lim inf
R!+1

K�R

Z

{⌘R<|t|R}
�(t) dt

= 0,

which implies the desired result. ut

Proof (Proof of Theorem 3) First, we recall that, by construction, the func-
tion u⇤ defined in (14) coincides with the 1-D minimizer u(0) along the n-th
coordinate xn. Then, Theorem 2 yields

@x
n

u⇤(x) = (u(0))0(xn) > 0 8x 2 Rn (83)

and
lim

x
n

!±1
u⇤(x0, xn) = lim

x
n

!±1
u(0)(xn) = ±1 8x0 2 Rn�1. (84)

In view of (83) and (84), it remains to show that u⇤ satisfies �(��)su⇤(x) =
W 0(u⇤(x)), for any x 2 Rn, and (16) will follow by Theorem 1. This is straight-
forward, since, by setting

z0 := (y0 � x0)/|yn � xn| and zn := $yn (85)

the change of variable formula yields

�(��)su⇤(x) =

Z

R

2

6

6

6

4

Z

Rn�1

u(0)($yn)� u(0)($xn)

|xn � yn|n+2s

✓

1 +
|x0 � y0|2

|xn � yn|2

◆

(n+2s)/2
dy0

3

7

7

7

5

dyn

= $2s

Z

R



Z

Rn�1

u(0)(zn)� u(0)($xn)

|$xn � zn|1+2s (1 + |z0|2)(n+2s)/2
dz0
�

dzn

=

Z

R

u(0)(zn)� u(0)($xn)

|$xn � zn|1+2s
dzn = W 0(u(0)($xn))

= W 0(u⇤(x)).

Now, we will prove the claims in (i), (ii) and (iii).
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We need to carefully estimate the contribution on BR and on CBR of the
Hs

0

norm of the function u⇤.
Let s 2 (0, 1), we observe that by the estimate in (12) it follows that there

exists a constant C
1

> 0 such that

k(u(0))0(xn)k
L1
�

[x
n

�(|x
n

|/2),x
n

+|x
n

|/2]
�  C

1

|xn|�(1+2s)

for any xn large enough.
Accordingly, Lemma 12 (used here with ⇢ := |xn|/2) gives

Z

R

|u(0)(xn)� u(0)(yn)|2

|xn � yn|1+2s
dyn  C

2

|xn|�2s, (86)

for any xn 2 Rn with |xn| large enough, for a suitable constant C
2

> 0.

From (86), we obtain that, for any x 2 Rn with |xn| large enough,

Z

Rn

|u⇤(x)� u⇤(y)|2

|x� y|n+2s
dy  C

3

Z

R

|u(0)($xn)� u(0)($yn)|2

|xn � yn|1+2s
dyn

 C
4

|xn|�2s, (87)

for suitable C
3

, C
4

> 0.

Also, if x 2 Rn with |xn|  R/2, we have that

Z

CB
R

|u⇤(x)� u⇤(y)|2

|x� y|n+2s
dy 

Z

CB
R

4

(|y|/2)n+2s
dy  C

5

R�2s (88)

for a suitable C
5

> 0.

Hence, for any R � 4, by (87) and (88), we get

Z

B
R

Z

CB
R

|u⇤(x)� u⇤(y)|2

|x� y|n+2s
dx dy


Z

B
R

\{|x
n

|R/2}

Z

Rn

|u⇤(x)� u⇤(y)|2

|x� y|n+2s
dx dy

+

Z

B
R

\{|x
n

|>R/2}

Z

CB
R

|u⇤(x)� u⇤(y)|2

|x� y|n+2s
dx dy

 C
5

Z

B
R

\{|x
n

|R/2}
R�2s dx+ C

4

Z

B
R

\{|x
n

|>R/2}
|xn|�2s dx

 C
6

Rn�2s, (89)

for a suitable C
6

> 0.
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Note that by (89) it follows

if s = 1/2,

1

Rn�1 logR

Z

B
R

Z

CB
R

|u⇤(x)� u⇤(y)|2

|x� y|n+2s
dx dy  C

6

1

logR
R!+1�! 0,

8s 2 (1/2, 1),

1

Rn�1

Z

B
R

Z

CB
R

|u⇤(x)� u⇤(y)|2

|x� y|n+2s
dx dy  C

6

1

R2s�1

R!+1�! 0,

which shows the asymptotic behavior as R goes to infinity of the contribution
in the Hs

0

norm of u⇤ on CBR, as stated in claim (ii) and (iii).

For the case s 2 (0, 1/2), the estimate in (89) yields

1

Rn�2s

Z

B
R

Z

CB
R

|u⇤(x)� u⇤(y)|2

|x� y|n+2s
dx dy  C

6

, (90)

which provides an upper bound for any R large enough. Moreover, by con-
struction of u⇤, we can obtain a lower bound as follows.

Z

B
R

Z

CB
R

|u⇤(x)� u⇤(y)|2

|x� y|n+2s
dx dy � C

7

Z

B
R/2

Z

CB2R

dx dy

|x� y|n+2s

� C
7

Z

B
R/2

dx

Z

CB2R

dy

|y|n+2s

= C
8

Rn�2s, (91)

for suitable positive constants C
7

and C
8

, provided that R is large enough.
Hence, (90) together with (91) gives the estimates of the contribution in the
Hs

0

norm of u⇤ on CBR for the case s 2 (0, 1/2) as in claim (i).

Now, notice that for any s 2 (0, 1) using the change of variable in (85),
t := $xn, ⇢ = x0/R, we have

1

Rn�1

Z

B
R

Z

Rn

|u⇤(x)� u⇤(y)|2

|x� y|n+2s
dx dy

=
$2s

Rn�1

Z

B
R



Z

Rn�1

✓

Z

R

|u(0)($xn)� u(0)(zn)|2

|$xn � zn|1+2s(1 + |z0|2)(n+2s)/2
dzn

◆

dz0
�

dx

=
1

$

Z $R

�$R

"

Z

Bp
1�|t|2/($2

R

2)

✓

Z

R

|u(0)(t)� u(0)(zn)|2

|t� zn|1+2s
dzn

◆

d⇢

#

dt

=
!n�1

$

Z $R

�$R



Z

R

|u(0)(t)� u(0)(zn)|2

|t� zn|1+2s
dzn

�

dt� 2✓
1

(R), (92)
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where

✓
1

(R) :=
1

2

!n�1

$

Z $R

�$R

" 

1�
✓

1� t2

$2R2

◆n�1

!

Z

R

|u(0)(t)� u(0)(zn)|2

|t� zn|1+2s
dzn

#

dt. (93)

Hence, it follows

1

2
R1�n

Z

B
R

Z

B
R

|u⇤(x)� u⇤(y)|2

|x� y|n+2s
dx dy

=
1

2
R1�n

✓

Z

B
R

Z

Rn

|u⇤(x)� u⇤(y)|2

|x� y|n+2s
dx dy

�
Z

B
R

Z

CB
R

|u⇤(x)� u⇤(y)|2

|x� y|n+2s
dx dy

◆

=
1

2

!n�1

$

Z $R

�$R



Z

R

|u(0)(t)� u(0)(zn)|2

|t� zn|1+2s
dzn

�

dt� ✓
2

(R), (94)

where

✓
2

(R) :=
1

2
R1�n

Z

B
R

Z

CB
R

|u⇤(x)� u⇤(y)|2

|x� y|n+2s
dx dy + ✓

1

(R).

Using again the change of variable in (85), we have

1

Rn�1

Z

B
R

W (u⇤(x)) dx =
!n�1

$

Z $R

�$R

W 0(u(0)(t))

✓

1� t2

$2R2

◆n�1

dt

=
!n�1

$

Z $R

�$R

W 0(u(0))(t)� ✓
3

(R), (95)

where

✓
3

(R) :=
!n�1

$

Z $R

�$R

W 0(u(0))(t)

 

1�
✓

1� t2

$2R2

◆n�1

!

dt.

Now we define the scaling constant �R depending of s as follows

�R =

8

>

>

<

>

>

:

1

logR
if s = 1/2,

1 if s 2 (1/2, 1)
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and we combine (94) with (95); we have

�RR
1�nF (u⇤;BR)

= �RR
1�n ·

(

1

2

Z

B
R

Z

B
R

|u⇤(x)� u⇤(y)|2

|x� y|n+2s
dx dy

+

Z

B
R

Z

CB
R

|u⇤(x)� u⇤(y)|2

|x� y|n+2s
dx dy +

Z

B
R

W 0(u⇤(x)) dx

)

= �R ·
(

1

2

!n�1

$

Z $R

�$R



Z

R

|u(0)(t)� u(0)(zn)|2

|t� zn|1+2s
dzn

�

dt (96)

+
1

2
R1�n

Z

B
R

Z

CB
R

|u⇤(x)� u⇤(y)|2

|x� y|n+2s
dx dy

+
!n�1

$

Z $R

�$R

W 0(u(0)(t)) dt� ✓
4

(R)

)

,

where

✓
4

(R) =
�

✓
2

(R) + ✓
3

(R)
�

.

We observe that

lim inf
R!+1

�R ✓4(R) = 0. (97)

Indeed, recalling that G (u(0)) is finite, due to Theorem 2, it su�ces to re-
call (89) and apply Lemma 4 with

↵(t, R) =
!n�1

$

 

1�
✓

1� |t|2

R2

◆n�1

!

and

�(t) =
1

2

Z

R

|u(0)(t)� u(0)(zn)|2

|t� zn|1+2s
dzn +W 0(u(0))(t).

Thus, we make use of (89) and (97), so that by taking the limit as R ! +1
in (96) we obtain

lim inf
R!+1

�RR
1�nF (u⇤;BR) =

!n�1

$
G (u(0)).

This completes the proof of claim (ii) and (iii).

Finally, using Lemma 12 with ⇢ := 1, we obtain

Z

Rn

|u⇤(x)� u⇤(y)|2

|x� y|n+2s
dy  C

9

,
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for any x 2 Rn, for a suitable C
9

> 0, and so

F (u⇤;BR \B
(1��)R) 

⇣

C
9

+ sup
r2[�1,1]

W (r)
⌘

�

�BR \B
(1��)R

�

�,

that is (17). The proof of the theorem is complete. ut

6 Appendix

In this Appendix we state and prove some general results involving the Ga-
gliardo norm k · kHs and various results, that are necessary for the proofs of
the main results of this papers.

As usual in this paper, throughout this section we will assume that the
fractional exponent s is a real number belonging to (0, 1).

6.1 Regularity properties of the fractional Allen-Cahn equation

The following propositions recall how the fractional Laplacian operators inter-
act with the C↵-norms. Their proofs can be found in [23, Chapter 2], which
presents some general properties of the (��)s operators and provides charac-
terization of its supersolutions (see also [24] and [12]).

Proposition 1 ([23, Proposition 2.1.10]) Let n � 1. Let w 2 C0,↵(Rn), for
↵ 2 (0, 1]. Let u 2 L1(Rn) be such that

� (��)su(x) = w(x) for any x 2 Rn. (98)

Then,

(i) If ↵+ 2s  1, then u 2 C0,↵+2s(Rn). Moreover

kukC0,↵+2s
(Rn

)

 C
�

kukL1
(RN

)

+ kwkC0,↵
(Rn

)

�

for a constant C depending only on n,↵ and s.

(ii) If ↵+ 2s > 1, then u 2 C1,↵+2s�1(Rn). Moreover

kukC1,↵+2s�1
(Rn

)

 C
�

kukL1
(Rn

)

+ kwkC0,↵
(Rn

)

�

for a constant C depending only on n,↵ and s.

Proposition 2 ([23, Proposition 2.1.11]) Let n � 1. Let u and w 2 L1(Rn)
be such that

�(��)su(x) = w(x) for any x 2 Rn.

Then,
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(i) If 2s  1, then u 2 C0,↵(Rn) for any ↵ < 2s. Moreover

kukC0,↵
(Rn

)

 C
�

kukL1
(Rn

)

+ kwkL1
(Rn

)

�

for a constant C depending only on n,↵ and s.

(ii) If 2s > 1, then u 2 C1,↵(Rn) for any ↵ < 2s� 1. Moreover

kukC1,↵
(Rn

)

 C
�

kukL1
(Rn

)

+ kwkL1
(Rn

)

�

for a constant C depending only on n,↵ and s.

We remark that the above results (and, consequently, the claims in the
forthcoming Lemma 5) are valid also for solutions of (98) in bounded domains,
leading to a local regularity theory.

Since we deal with the case of w in (98) being the derivative of a double-well
potential W , we have to extrapolate the regularity informations for the solu-
tions of equation (3); this can be obtained by iterating the results in Propo-
sition 1 and Proposition 2. In the following two lemmas we arrange some
regularity results in the form to be applied in this paper (as well as in [21]
and [22]).

Lemma 5 Let n � 1. Let u 2 L1(Rn) be such that

� (��)su(x) = W 0(u(x)) for any x 2 Rn, (99)

with W 2 C1(R). Then,

(i) If s 2 (0, 1/2], then u 2 C0,↵(Rn) for any ↵ < 2s. Moreover,

kukC0,↵
(Rn

)

 C
�

kukL1
(Rn

)

+ kW 0(u)kL1
(Rn

)

�

.

(ii) If s 2 (1/2, 1), then u 2 C1,↵(Rn) for any ↵ < 2s� 1. Moreover,

kukC1,↵
(Rn

)

 C
�

kukL1
(Rn

)

+ kW 0(u)kL1
(Rn

)

�

,

for a constant C depending only on n,↵ and s.

Proof The proof is immediate. Let u in L1(Rn) be a solution of equation (99).
Since W belongs to C1(R), it su�ces to apply Proposition 2(i)-(ii) by chosing
w(x) := W 0(u(x)). ut

Lemma 6 Let n � 1 and let u 2 L1(Rn) satisfy equation (99), with W 2
C2(R). Then u 2 C2,↵(Rn), with ↵ depending on s.
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Proof Let s 2 (1/2, 1) and let u in L1(Rn) be a solution of the equation (99).
Then, u 2 C1,↵(Rn) with its C1,↵ norm bounded as in Lemma 5(i). Moreover
u0 satisfies

� (��)su0(x) = W 00(u(x))u0(x) for any x 2 Rn. (100)

By the hypothesis on W and u, we can apply Proposition 2(ii) to the solution
u0 of equation (100) with w := W 00(u(x))u0(x). It follows that u0 belongs to
C1,↵(Rn) for any ↵ < 2s� 1 and thus the claim is proved.

Let s = 1/2. Then, by the fact that W is in C2 together with the regularity
of u provided by Lemma 5(i), Proposition 1(ii) with w := W 0(u) yields that
the function u belongs to C1,↵(Rn) for any ↵ < 1. Now, we can argue as for
the case s 2 (1/2, 1) to obtain the desired regularity for u by Proposition 2(ii).

Finally, let s 2 (0, 1/2) and let u 2 L1(Rn) be a solution of (99). So,
Lemma 5(i) yields u 2 C0,↵(Rn) for any ↵ < 2s. Then, for s 2 (1/4, 1/2)
we can apply Proposition 1(ii) and we get u 2 C1,↵+2s�1(Rn). Hence, u0 is
well defined and it satisfies equation (100) with w = W 00(u)u0 belonging to
C0,↵+2s�1(Rn) and again by Proposition 1(ii) we get u0 2 C1,↵+2s�1 for any
↵ < 2s.

For s 2 (0, 1/4], we can use Proposition 1(i) in order to obtain u 2
C0,↵+2s(Rn) for any ↵ < 2s. Thus, when s 2 (1/6, 1/4)], we can apply
twice Proposition 1(ii) arguing as in the case s 2 (1/4, 1/2) and we get
u0 2 C1,↵+4s�1(Rn), for any ↵ < 2s.

By iterating the above procedure on k 2 N, we obtain that, when s 2
(1/(2k + 2), 1/2k], u belongs to C2,↵+2k�1 for any ↵ < 2s. ut

We conclude this section observing that the equation we deal with behaves
well under limits:

Lemma 7 Let W 2 C1(R). For any k 2 N, let uk 2 C(Rn) \ L1(Rn) be

such that

�(��)suk(x) = W 0(uk(x)) for any x 2 Bk.

Suppose that sup
k

kukkL1
(Rn

)

< 1 and that uk converges a.e. to a function u.

Then,

�(��)su(x) = W 0(u(x)) for any x 2 Rn.

Proof Given any � 2 C1
0

(R) supported in Bk,

Z

R

W 0(uk(x))�(x) dx=

Z

R



Z

R

uk(y)� uk(x)

|x� y|n+2s
dy

�

�(x) dx

=

Z

R

Z

R

uk(x)
�

�(y)� �(x)
�

|x� y|n+2s
dx dy.
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Moreover,
Z

R

�

�

�

Z

R

�(x)� �(y)

|x� y|n+2s
dy
�

�

�

dx =

Z

R

�

�

�

Z

R

|�(x)� �(x� y)|
|y|n+2s

dy
�

�

�

dx


Z

R

dx



�

�

�

Z

B1

�(x)� �(x+ y) +r�(x)y
|y|n+2s

dy
�

�

�

+
�

�

�

Z

CB1

2k�kL1

|y|n+2s
dy
�

�

�

�

dx


Z

R

dx
�

�

�

Z

1

0

kr2�kL1

rn+2s
rn+1 dr +

Z 1

1

2k�kL1

r1+2s
dr
�

�

�

< +1.

Thus, by Dominated Convergence Theorem,

Z

R

W 0(u(x))�(x) dx =

Z

R

Z

R

u(x)
�

�(y)� �(x)
�

|x� y|n+2s
dx dy

=

Z

R



Z

R

u(y)� u(x)

|x� y|n+2s
dy

�

�(x) dx

=

Z

R

�(��)su(x)�(x) dx,

which gives the desired claim, since � is arbitrary. ut

6.2 Construction of barriers

We start by recalling the construction of an useful barrier, that is used in
[20,21,22] and also here in the asymptotic analysis of the one-dimensional
minimizers of the energy (1) (see the forthcoming Proposition 3). The proof
can be found in [21, Lemma 3.1]; it relies on a fine construction around the
power function t 7! |t|�2s together with some estimates proved here in the
following.

Lemma 8 ([21]). Let n � 1. Given any ⌧ > 0, there exists a constant C > 1,
possibly depending on n, s and ⌧ , such that the following holds: for any R � C,

there exists a rotationally symmetric function

w 2 C
�

Rn; [�1 + CR�2s, 1]
�

, (101)

with

w = 1 in CBR, (102)

such that

Z

Rn

w(y)� w(x)

|x� y|n+2s
dy  ⌧

�

1 + w(x)
�

(103)
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and

1

C
(R+ 1� |x|)�2s  1 + w(x)  C

�

R+ 1� |x|
��2s

(104)

for any x 2 BR.

Now, we consider the following equation related to the fractional operator
(��)s on the real line,

� (��)sv(x)� ↵v(x) = 0, (105)

where ↵ is a positive constant. Precisely, in Corollary 4 we show that the func-
tion v being a subsolution of equation (105) away from the origin is bounded
(up to a multiplicative constant) by the function x 7! |x|�(1+2s). This estimate
will be crucial in the analysis of the global minimizers of the functionals F
(see Theorem 2).

First, we need to prove the following 1-D result.

Lemma 9 Let ⌘ 2 C2(R; (0,+1)), with k⌘kC2
(R)

< +1, and

⌘(x) =
1

|x|1+2s
for any x 2 R \ (�1, 1).

Then there exists  2 (0,+1), possibly depending on s and ⌘, such that

lim sup
x!±1

�(��)s⌘(x)

⌘(x)
 .

Proof We will denote by C suitable positive quantities, possibly di↵erent from
line to line, and possibly depending on s and ⌘. For all (x, y) 2 R2 with |x| � 2,
we define

i(x, y) :=
⌘(y)� ⌘(x)� �

(�1/4,1/4)(x� y) ⌘0(x)(y � x)

|x� y|1+2s
.

For any fixed y 2 R, we have that

lim
x!±1

|x|1+2si(x, y) = lim
x!±1

|x|1+2s

|x� y|1+2s

�

⌘(y)� ⌘(x)
�

= ⌘(y). (106)

Also, if |y|  1 and |x| � 2, we have that |x� y| � |x|� |y| � |x|/2 and so

|x|1+2s|i(x, y)| =
|x|1+2s

�

�⌘(y)� ⌘(x)
�

�

|x� y|1+2s
 16 sup

R
|⌘|. (107)

Using (106), (107) and the Bounded Convergence Theorem, we conclude that

lim
x!±1

|x|1+2s

Z

1

�1

⌘(y)� ⌘(x)� �
(�1/4,1/4)(x� y) ⌘0(x)(y � x)

|x� y|1+2s
dy

=

Z

1

�1

lim
x!±1

|x|1+2si(x, y) dy =

Z

1

�1

⌘(y) dy.

(108)
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Now, fixed |x| � 2, we estimate the contribution in R \ (�1, 1). We write R \
(�1, 1) = P [Q [R [ S, where

P =
n

y 2 R \ (�1, 1) s.t. |x|/2 < |y|  2|x| and |x� y| � 1/4
o

,

Q =
n

y 2 R \ (�1, 1) s.t. |x|/2 < |y|  2|x| and |x� y| < 1/4
o

,

R =
n

y 2 R \ (�1, 1) s.t. |y| > 2|x|
o

,

S =
n

y 2 R \ (�1, 1) s.t. |y|  |x|/2
o

.

We observe that, if y 2 P ,

|i(x, y)| = |⌘(y)� ⌘(x)|
|x� y|1+2s

 |⌘(y)|+ |⌘(x)|
|x� y|1+2s

=
(1/|y|1+2s) + (1/|x|1+2s)

|x� y|1+2s

 C

|x|1+2s|x� y|1+2s
. (109)

As a consequence,

|x|1+2s

Z

P

i(x, y) dy  C

Z

P

dy

|x� y|1+2s
 C

Z

{|x�y|�1/4}

dy

|x� y|1+2s
 C.

Moreover, if y 2 Q, we can use the Taylor expansion of the function 1/|t|1+2s

to obtain that

⌘(y)� ⌘(x)� �
(�1/4,1/4)(x� y) ⌘0(x)(y � x)

= ⌘(y)� ⌘(x)� ⌘0(x) · (y � x)

=
1

|y|1+2s
� 1

|x|1+2s
+

(1 + 2s)

|x|3+2s
x(y � x)

=
(1 + 2s)(2 + 2s)

|⇠|3+2s
|x� y|2,

for an appropriate ⇠ which lies on the segment joining x to y. Notice also
that if y 2 Q, then y � 0 if and only if x � 0, therefore both x and y lie
either in [|x|/2,+1) or in (�1,�|x|/2]. In any case, |⇠| � |x|/2 and so, for
any y 2 Q,

|i(x, y)| =
|⌘(y)� ⌘(x)� �

(�1/4,1/4)(x� y) ⌘0(x)(y � x)|
|x� y|1+2s

=
C

|⇠|3+2s
|x� y|1�2s  C

|x|3+2s
|x� y|1�2s.

As a consequence,

|x|1+2s

Z

Q

i(x, y) dy  C

|x|2

Z

Q

|x� y|1�2s

 C

|x|2

Z

|x�y|<1/4

|x� y|1�2s  C

|x|2  C.
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Furthermore, if y 2 R, we have that |x � y| � |y| � |x| � |x| > 1/4, thus we
can estimate the function i(x, y) as in (109) and we obtain

|i(x, y)|  C

|x|1+2s|x� y|1+2s
.

In particular,

|x|1+2s

Z

R

i(x, y) dy  C

Z

{|y|�2|x|}

dy

|x� y|1+2s

 C

Z

{|x�y|�|x|}

dy

|x� y|1+2s
=

C

|x|2s  C.

As for the last contribution, if y 2 S then |x� y| � |x|� |y| � |x|/2 � 1 and
so

|i(x, y)| |⌘(y)|+ |⌘(x)|
|x� y|1+2s

=
(1/|y|1+2s) + (1/|x|1+2s)

|x� y|1+2s

 C

|x|1+2s|y|1+2s
.

Accordingly,

|x|1+2s

Z

S

i(x, y) dy  C

Z

{1|y||x|/2}

dy

|y|1+2s
 C.

All in all, we obtain that

lim sup
x!±1

|x|1+2s

Z

R\(�1,1)

⌘(y)� ⌘(x)� �
(�1/4,1/4)(x� y)r⌘(x) · (y � x)

|x� y|1+2s
dy

= lim sup
x!±1

|x|1+2s

✓

Z

P

i(x, y) dy +

Z

Q

i(x, y) dy

+

Z

R

i(x, y) dy +

Z

S

i(x, y) dy

◆

 C.

From this and (108), the desired result plainly follows. ut

Corollary 4 Let ↵, � > 0. Let v be a bounded function in C0,�(R), with

� > 2s, such that �(��)sv(x) � ↵v(x) for any x 2 R \ (��,�). Then, there
exists a constant C̄ > 0, possibly depending on s, ↵ and �, such that

v(x)  C̄

|x|1+2s
for any x 2 R.

Proof If v is identically 0, we have done. So, we suppose kvkL1
(R)

> 0.
Take ⌘ and  as in Lemma 9. Define

a :=
⇣ ↵

2

⌘

1/(2s)
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and ⇣(x) := ⌘(ax).
Then,

lim sup
x!±1

�(��)s⇣(x)

⇣(x)
= a2s lim sup

x!±1

�(��)s⌘(ax)

⌘(ax)
 a2s =

↵

2
.

As a consequence, there exists �0 � � such that

�(��)s⇣(x)  ↵⇣(x) for any x 2 R \ (��0,�0). (110)

Now, we set

C̄ :=
4kvkL1

(R)

min
[�a�0,a�0

]

⌘
=

4kvkL1
(R)

min
[��0,�0

]

⇣
.

We claim that

v(x)  C̄⇣(x) for any x 2 R. (111)

In order to prove the above inequality, we take b in [0,+1) and we de-
fine vb(x) := C̄⇣(x) + b � v(x). When b > kvkL1

(R)

, we have that vb(x) > 0
for any x 2 R. Now, if vb(x) > 0 8x 2 R and 8b 2 [0,+1], we take b := 0
and we get (111). Then, we may take bo the first b for which vb touches 0 from
above: we have that vb

o

(x) � 0 and that there exists a sequence xk 2 R such
that vb

o

(xk)  2�k, for k 2 N. We claim that

bo = 0. (112)

Indeed, we have, if k is su�ciently large,

kvkL1
(R)

� 2�k � vb
o

(xk) � C̄⇣(xk)� v(xk) � C̄⇣(xk)� kvkL1
(R)

and so

⇣(xk) 
2kvkL1

(R)

C̄
=

min
[��0,�0

]

⇣

2
.

Therefore, |xk| > �0.
Hence, recalling (110),

Z

R

vb
o

(y)� vb
o

(xk)

|xk � y|1+2s
dy = �(��)svb

o

(xk)

= �C̄(��)s⇣(xk) + (��)sv(xk)  ↵(C̄⇣(xk)� v(xk))

= ↵vb
o

(xk)� ↵bo  2�k↵� ↵bo.

(113)

Now, we define vk(x) := vb
o

(x + xk). Notice that vk(x) � 0 for any x 2 Rn

and vk(0)  2�k. Also, by the Theorem of Ascoli, up to subsequence, we may
suppose that vk converges to some v1 locally uniformly as k ! +1. It follows
that

v1(x) � 0 = v1(0) for any x 2 R. (114)
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Moreover, by the assumption on the function v, we obtain that vk satisfies

|vk(t)� vk(0)|
|t|1+2s

 C
�

|t|��1�2s�
(�1,1)(t) + |t|�1�2s�R\(�1,1)(t)

�

,

for a suitable constant C > 0. Thus, the Dominated Convergence Theorem
yields

lim
k!+1

Z

R

vk(t)� vk(0)

|t|1+2s
dt =

Z

R

v1(t)

|t|1+2s
dt. (115)

Finally, combining the above equation with (113) and (114), we get

�↵bo � lim
k!+1

Z

R

vb
o

(y)� vb
o

(xk)

|xk � y|1+2s
dy

= lim
k!+1

Z

R

vk(t)� vk(0)

|t|1+2s
dt

=

Z

R

v1(t)

|t|1+2s
dt � 0.

This completes the proof of (112).

Now, from (112), we conclude that, for any x 2 R,

0  vb
o

(x) = C̄⇣(x) + bo � v(x) = C̄⇣(x)� v(x)

and so v(x)  C̄⇣(x). ut

We finish this section by using the barriers constructed in Lemma 8 and
Lemma 9 in order to obtain a precise control on the behavior at infinity of the
monotone solutions of equation (3).

Proposition 3 Let n = 1 and let W 2 C2(R) be a double-well potential with

wells at {�1,+1} such that W 00(±1) > 0. Suppose that u is a strictly increasing

function which satisfies

(

�(��)su(x) = W 0(u(x)) for any x 2 R,
lim

x!±1
u(x) = ±1.

(116)

Then there exists a constant C � 1 such that

|u(x)� sign (x)|  C |x|�2s, (117)

�

�u0(x)
�

�  C |x|�(1+2s) (118)

for any large x 2 R.
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Proof First, we note that the potential W satisfies

W 0(t) � W 0(r) + c(t� r) when r  t, r, t 2 [�1, �1 + c] [ [+1� c, +1],
(119)

for some c > 0.
Now, we choose ⌧ = c in Lemma 8 and, for any R � C, we consider the

barrier w constructed there.
From (101), we know that there exists K 2 R such that, if k 2 (�1,K],

then w(x� k) > u(x) for any x 2 R. We take k̄ as large as possible with this
property, i.e.,

w(x� k) > u(x) for any k < k̄ and any x 2 R (120)

and there exists an infinitesimal sequence ⌘j 2 [0, 1) and points xj 2 R for
which

w(xj � (k̄ + ⌘j))  u(xj). (121)

From the asymptotic behavior at 1 and the strict monotonicity of u, we know
that |u(x)| < 1 for any x 2 R. Hence, by (121),

w(xj � (k̄ + ⌘j)) < 1.

This and (102) gives that
�

�xj � (k̄ + ⌘j)
�

�  R, (122)

therefore
|xj |  R+ |k̄|+ 1.

Thus, up to subsequence, we may suppose that

lim
j!+1

xj = x̄,

for some x̄ 2 R. Moreover, (122) implies that

x̄� k̄ 2 [�R,R], (123)

while (121) and (120) give that w(x̄� k̄) = u(x̄).

Thus, we set v(x) := w(x�k̄)�u(x) and we see that v(x) � 0 for any x 2 R
and v(x̄) = 0.

Note that if x� k̄ 2 [�R,R] and u(x) 2 [�1,�1 + c], then

Z

R

v(y)� v(x)

|x� y|1+2s
dy =

Z

R

w(y � k̄)� w(x� k̄)

|x� y|1+2s
dy + (��)su(x)

 ⌧(1 + w(x� k̄))�W 0(u(x))

 ⌧(1 + w(x� k̄))� c(u(x) + 1)

= cv(x), (124)

thanks to (103), (116) and (119).
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We claim that
u(x̄) > �1 + c. (125)

The proof of (125) is by contradiction: if u(x̄) 2 [�1, �1 + c] we deduce
from (123) and (124) that

Z

R

v(y)

|x̄� y|1+2s
dy =

Z

R

v(y)� v(x̄)

|x̄� y|1+2s
dy  cv(x̄) = 0.

Since the first integrand is non-negative, we would have that v vanishes iden-
tically, i.e. w(x� k̄) = u(x) for any x 2 Rn. But then

+1 = lim
x!�1

w(x� k̄) = lim
x!�1

u(x) = �1

and this contradiction proves (125).

From (104), (123) and (125), we obtain

C
�

R+ 1� |x̄� k̄|
��2s � 1 + w(x̄� k̄) = 1 + u(x̄) > c,

hence
|x̄� k̄| � R� C 0 (126)

for a suitable C 0 > 0.
We now observe that

x̄� k̄ � 0. (127)

Indeed, if, by contradiction, x̄ � k̄ < 0, we define k̂ := 2x̄ � k̄ < k̄ and we
use (120) to obtain

w(k̄ � x̄) = w(x̄� k̂) > u(x̄) = w(x̄� k̄).

Since w is even, this is a contradiction, and (127) is proved.

We deduce from (123), (126) and (127) that

x̄� k̄ 2 [R� C 0, R]. (128)

We fix  2 R such that u(�) = �1 + c. We remark that �  x̄ and so

u(x� )  u(x+ x̄), (129)

for any x 2 R, thanks to (125) and the monotonicity of u.

Now, we take any

y 2


R

2
, R

�

. (130)

Then, by (128), we have that

x̄� y � k̄ 2


�R

2
,
R

2

�

,
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and so, by (104),

1 + w(x̄� y � k̄)  C
�

R+ 1� |x̄� y � k̄|
��2s

 C(R/2)�2s  4C y�2s.

By the above inequality, (120) and (129) we obtain that

u(�� y)  u(x̄� y)  w(x̄� y � k̄)  �1 + 4C y�2s

for any y as in (130).

Since  is a constant and R may be taken arbitrarily large, this says that,
when x is negative and very large,

u(x)  �1 + C |x|�2s,

for a suitably renamed C > 0. Analogously, one can prove that

u(x) � +1� C |x|�2s

when x is positive and very large, and these estimates prove the formula
in (117).

Finally, in order to prove the estimate in (118), we observe that the function
u belongs to C2(R) (see Lemma 6) and that its derivative u0 satisfies the
following equation

�(��)su0(x) = W 00(u(x))u0 for any x 2 R.

Then, since limx!±1 u = ±1 and the C2 potential W attains its minimum on
±1, there exist ↵,� > 0 such that (u)0 satisfies

�(��)su0(x) � ↵u0(x) for any x 2 R \ (��,�).

Hence, if we choose v = u0, Corollary 4 yields the desired estimate in (118). ut

Remark 3 We note that the statement in Proposition 3 is also valid for so-
lution in [0,1), by replacing the limit condition in (116) with the following
assumptions

lim
x!+1

u(x) = +1 and u(x) = �1 8x 2 (�1, 0].

In such a case, the estimates (117) and (118) are meant for x positive and
large enough.
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6.3 A compactness remark

In the following lemma, we give full details of a compactness result of classical
flavor.

Lemma 10 Let n � 1, ⌦ ⇢ Rn
be a Lipschitz bounded open set and T be a

bounded subset of L2(⌦). Suppose that

sup
f2T

Z

⌦

Z

⌦

|f(x)� f(y)|2

|x� y|n+2s
dx dy < +1.

Then T is precompact in L2(⌦).

Proof The proof follows the one of the classical Riesz-Frechet-Kolmogorov
Theorem, but we need to operate some modifications due to the non-locality
of the fractional norm.

We show that T is totally bounded in L2(⌦), i.e., for any " 2 (0, 1) there
exist �

1

, . . . ,�M 2 L2(⌦) such that for any f 2 T there exists j 2 {1, . . . ,M}
such that

kf � �jkL2
(⌦)

 ". (131)

First, we remark that we can extend any function f 2 T as a function f̃
in Hs(Rn) (see, for instance, [15, Section 5]). Therefore, we can suppose that
⌦ is contained in a large cube ⌦̃, with kf̃kHs

(

˜⌦)

 C
0

kfkHs

(⌦)

. For the sake
of simplicity, we drop the tilda’s in f and ⌦ and we let

C := 1 + sup
f2T

kfkL2
(⌦)

+ sup
f2T

Z

⌦

Z

⌦

|f(x)� f(y)|2

|x� y|n+2s
dx dy,

⇢  ⇢" :=

✓

"

4
p
C n(n/2)+1

◆

1/s

and ⌘ = ⌘" :=
" ⇢n/2

2
,

and we take a collection of disjoints cubes Q
1

, . . . , QN of side ⇢ such that

⌦ =
N
[

j=1

Qj .

For any x 2 ⌦ we define

j(x) as the unique integer in {1, . . . , N} for which x 2 Qj(x). (132)

Also, for any f 2 T , let

P (f)(x) :=
1

|Qj(x)|

Z

Q
j(x)

f(y) dy.

Notice that
P (f + g) = P (f) + P (g) for any f, g 2 T
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and that P (f) is constant, say equal to qj(f), in any Qj , for j 2 {1, . . . , N}.
Therefore, we can define

R(f) := ⇢n/2
�

q
1

(f), . . . , qN (f)
�

2 RN .

We observe that R(f + g) = R(f) +R(g). Moreover,

kP (f)k2L2
(⌦)

=
N
X

j=1

Z

Q
j

|P (f)|2 dx

 ⇢n
N
X

j=1

|qj(f)|2 = |R(f)|2  |R(f)|2

⇢n
. (133)

and, by Hölder inequality,

|R(f)|2 =
N
X

j=1

⇢n|qj(f)|2 =
1

⇢n

N
X

j=1

�

�

�

�

�

Z

Q
j

f(y) dy

�

�

�

�

�

2


N
X

j=1

Z

Q
j

|f(y)|2 dy =

Z

⌦

|f(y)|2 = kfk2L2
(⌦)

.

In particular,

sup
f2T

|R(f)|2  C,

that is, the set R(T ) is bounded in RN and so, since it is finite dimensional,
it is totally bounded. Therefore, there exist b

1

, . . . , bM 2 RN such that

R(T ) ✓
M
[

i=1

B⌘(bi). (134)

For any i 2 {1, . . . ,M}, we write the coordinates of bi as bi = (bi,1, . . . , bi,N ) 2
RN . For any x 2 ⌦, we set

�i(x) := ⇢�n/2 bi,j(x),

where j(x) is as in (132).
Notice that �i is constant on Qj , i.e. if x 2 Qj then

P (�i)(x) = ⇢�
n

2 bi,j = �i(x) (135)

and so qj(�i) = ⇢�
n

2 bi,j ; thus

R(�i) = bi. (136)
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Furthermore, for any f 2 T , by Hölder inequality,

kf � P (f)k2L2
(⌦)

=
N
X

j=1

Z

Q
j

|f(x)� P (f)(x)|2 dx

=
N
X

j=1

Z

Q
j

�

�

�

�

�

f(x)� 1

|Qj |

Z

Q
j

f(y) dy

�

�

�

�

�

2

dx

=
N
X

j=1

Z

Q
j

1

|Qj |2

�

�

�

�

�

Z

Q
j

f(x)� f(y) dy

�

�

�

�

�

2

dx

 1

⇢n

N
X

j=1

Z

Q
j

"

Z

Q
j

�

�f(x)� f(y)
�

�

2

dy

#

dx

 n(n/2)+1⇢2s
N
X

j=1

Z

Q
j

"

Z

Q
j

|f(x)� f(y)|2

|x� y|n+2s
dy

#

dx

 n(n/2)+1⇢2s
N
X

j=1

Z

Q
j



Z

⌦

|f(x)� f(y)|2

|x� y|n+2s
dy

�

dx

= n(n/2)+1⇢2s
Z

⌦



Z

⌦

|f(x)� f(y)|2

|x� y|n+2s
dy

�

dx

 C n(n/2)+1 ⇢2s =
"2

16
.

Consequently, for any j 2 {1, ...,M}, recalling (133) and (135)

kf � �jkL2
(⌦)

 kf � P (f)kL2
(⌦)

+ kP (�j)� �jkL2
(⌦)

+ kP (f � �j)kL2
(⌦)

 "

2
+

|R(f)�R(�j)|
⇢n/2

. (137)

Now, given any f 2 T , we recall (134) and (136) and we take j 2
{1, . . . ,M} such that R(f) 2 B⌘(bj). Then, (135) and (137) give that

kf � �jkL2
(⌦)

 "

2
+

|R(f)� bj |
⇢n/2

 "

2
+

⌘

⇢n/2
= ".

This proves (131), as desired. ut
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6.4 Integral computations

Lemma 11 deals with the kernels of the Gagliardo norm in the case of n-
dimensional balls BR. We provide a lower bound, with respect to the radius
R of the contribution coming from far of the energy.

Lemma 12 and Lemma 13 estimate the fractional derivative of bounded
functions on the whole space Rn. We also provide some estimates of the energy
with respect to the L1-norm of the functions and their derivatives. The case
of radial symmetric functions is analyzed in Lemma 14.

Lemma 11 Let n � 1 and R � 1. Then,

if s 2 (0, 1/2),

Z

B
R

Z

B2R\B
R

dx dy

|x� y|n+2s


3!2

n�1

Rn�2s

2s (1� 2s)
. (138)

If s = 1/2,

Z

B
R

Z

CB
R+1

dx dy

|x� y|n+2s
 !2

n�1

Rn�1 (2n + log(3R)) . (139)

If s 2 (1/2, 1),

Z

B
R

Z

CB
R+1

dx dy

|x� y|n+2s


!2

n�1

Rn�1

2s� 1
. (140)

Proof For any fixed y 2 Rn,

2s

Z

B1

dx

|x� y|n+2s
= �

Z

B1

div

✓

x� y

|x� y|n+2s

◆

dx

= �
Z

@B1

x� y

|x� y|n+2s
· x dH n�1(x)


Z

@B1

|x� y|1�n�2s dH n�1(x). (141)

Accordingly, if s 2 (0, 1/2),

2s

Z

B1

Z

B2\B1

dx dy

|x� y|n+2s

Z

@B1

"

Z

B2\B1

|x� y|1�n�2s dy

#

dH n�1(x)


Z

@B1



Z

B3

|⇣|1�n�2s d⇣

�

dH n�1(x)

=
31�2s !2

n�1

1� 2s
,

which is finite by our assumption on s, and so, by changing variable x̃ := x/R
and ỹ := y/R,

2s

Z

B
R

Z

B2R\B
R

dx dy

|x� y|n+2s
= Rn�2s

Z

B1

Z

B2\B1

dx̃ dỹ

|x̃� ỹ|n+2s


31�2s !2

n�1

Rn�2s

1� 2s
,
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proving (138).

On the other hand, if s 2 (1/2, 1), we set " := 1/R, and we use (141) to
conclude that
Z

B1

Z

CB1+"

dx dy

|x� y|n+2s

Z

@B1

"

Z

CB1+"

|x� y|1�n�2s dy

#

dH n�1(x)


Z

@B1



Z

CB
"

|⇣|1�n�2s d⇣

�

dH n�1(x) 
!2

n�1

"1�2s

2s� 1
,

hence (140) follows from scaling.

Finally, when s = 1/2, we use (141) in the following way:
Z

B1

Z

CB1+"

dx dy

|x� y|n+2s

Z

B1

Z

B2\B1+"

dx dy

|x� y|n+1

+

Z

B1

Z

CB2

dx dy

(|y|/2)n+1


Z

@B1

"

Z

B2\B1+"

|x� y|�n dy

#

dH n�1(x) + 2n!2

n�1


Z

@B1

"

Z

B3\B"

|⇣|�n d⇣

#

dH n�1(x) + 2n!2

n�1

= !2

n�1

✓

2n + log
3

"

◆

,

hence (139) follows again from scaling. ut

Similarly as in previous Lemma 11, one can estimate the kernel interaction
of smooth functions as follows.

Lemma 12 Let n � 1 and x 2 Rn
, ⇢ > 0 and  2 L1(Rn) \W 1,1(B⇢(x)).

Then,

Z

Rn

| (x)�  (y)|2

|x� y|n+2s
dy  4!n�1

(1� s) s

h

kr k2L1
(B

⇢

(x))⇢
2(1�s) + k k2L1

(Rn

)

⇢�2s
i

.

(142)

Proof We bound the left hand side of (142) by
Z

B
⇢

(x)

| (x)�  (y)|2

|x� y|n+2s
dy+

Z

CB
⇢

(x)

| (x)�  (y)|2

|x� y|n+2s
dy


Z

B
⇢

(x)

kr k2L1
(B

⇢

(x))

|x� y|n+2s�2

dy +

Z

CB
⇢

(x)

4 k k2L1
(Rn

)

|x� y|n+2s
dy

=

Z

B
⇢

kr k2L1
(B

⇢

(x))

|⇣|n+2s�2

d⇣ +

Z

CB
⇢

4 k k2L1
(Rn

)

|⇣|n+2s
d⇣

 !n�1

 

kr k2L1
(B

⇢

(x)) ⇢
2(1�s)

2(1� s)
+

4 k k2L1
(Rn

)

⇢�2s

s

!
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and this easily implies (142). ut

Lemma 13 Let n � 1. Let x 2 Rn
, ⇢ > 0 and  2 L1(Rn).

Suppose that there exists ⌅ 2 Rn
and K 2 R

 (y)�  (x)� ⌅ · (y � x)  K|x� y|2, (143)

for any y 2 B⇢(x). Then,
Z

Rn

 (y)�  (x)

|x� y|n+2s
dy  !n�1

⇣K⇢2(1�s)

2(1� s)
+

k kL1
(Rn

)

⇢�2s

s

⌘

. (144)

Analogously, if we replace (143) with the assumption that there exists ⌅̃ 2 Rn

and K̃ 2 R such that

 (y)�  (x)� ⌅̃ · (y � x) � �K̃|x� y|2, (145)

for any y 2 B⇢(x), we obtain that

Z

Rn

 (x)�  (y)

|x� y|n+2s
dy  !n�1

⇣K̃⇢2(1�s)

2(1� s)
+

k kL1
(Rn

)

⇢�2s

s

⌘

. (146)

In particular, if  2 L1(Rn) \W 2,1(B⇢(x)) we have that

�

�

�

�

Z

Rn

 (y)�  (x)

|x� y|n+2s
dy

�

�

�

�

 !n�1

(1� s) s

⇣

kD2 kL1
(B

⇢

(x))⇢
2(1�s) + k kL1

(Rn

)

⇢�2s
⌘

. (147)

Proof We prove (144) under assumption (143), since the proof of (146) under
assumption (145) is the same, and then (147) follows from (143) and (145) by
choosing ⌅ = ⌅̃ = r (x) and K = K̃ := kD2 kL1

(B
⇢

(x)). The proof below
is similar to the one of Lemma 12, but we give the details for the facility of
the reader.

Notice that, by symmetry,
Z

B
⇢

(x)

⌅ · (x� y)

|x� y|n+2s
dy = 0.

Consequently, we bound the left hand side of (144) by
Z

B
⇢

(x)

 (y)�  (x) + ⌅ · (x� y)

|x� y|n+2s
dy +

Z

CB
⇢

(x)

| (x)�  (y)|
|x� y|n+2s

dy


Z

B
⇢

(x)

K

|x� y|n+2s�2

dy +

Z

CB
⇢

(x)

2k kL1
(Rn

)

|x� y|n+2s
dy

=

Z

B
⇢

K

|⇣|n+2s�2

d⇣ +

Z

CB
⇢

2k kL1
(Rn

)

|⇣|n+2s
dy

= !n�1

hK ⇢2(1�s)

2(1� s)
+

k kL1
(Rn

)

⇢�2s

s

i

,

that is (144). ut
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Lemma 14 Let n � 1 and let x 2 Rn
. Let  2 L1(Rn) be continuous, radial

and radially non-decreasing, with

sup
Rn

 = max
Rn

 = M.

Suppose that  2 W 2,1({ < M}). Then,

Z

Rn

 (x)�  (y)

|x� y|n+2s
dy  !n�1

(1� s) s

⇣

kD2 kL1
({ <M}) + k kL1

(Rn

)

⌘

. (148)

Proof By the radial symmetry of  , we have that

{ < M} = B

for some  > 0. Accordingly,

for any z, y in the closure of B,

 (y) �  (z) +r (z)(y � z)� kD2 kL1
({ <M})(z � y)2.

(149)

Also, fixed any x 2 Rn, we define

z :=

⇢

x if x 2 B,
x/|x| otherwise.

Notice that |z|  , that  (x) =  (z), that  (z) �  (y) � 0 if and only
if |z| � |y|. Also, if |x| >  and ↵ is the angle between the vector x � z
and y � z, the convexity of B implies that

↵ 2


⇡

2
,
3⇡

2

�

and so cos↵  0. Hence,

|x� y| =
p

|z � y|2 + |z � x|2 � 2|z � y| |z � x| cos↵
�
p

|z � y|2 + |z � x|2 � |z � y|,

if |x| >  (and, obviously, the estimate holds for |x|   too, since is the case
z = x).
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Thus, we use the above observations to obtain
Z

Rn

 (x)�  (y)

|x� y|n+2s
dy 

Z

B|z|

 (z)�  (y)

|x� y|n+2s
dy 

Z

B|z|

 (z)�  (y)

|z � y|n+2s
dy


Z

B|z|\B1(z)

 (z)�  (y)

|z � y|n+2s
dy

+

Z

B|z|\CB1(z)

 (z)�  (y)

|z � y|n+2s
dy


Z

B1(z)

kD2 kL1
({ <M}) |z � y|2�n�2s dy

+

Z

CB1(z)

2 k kL1
(Rn

)

|z � y|n+2s
dy

 !n�1

kD2 kL1
({ <M})

1� s
+

k kL1
(Rn

)

s

�

,

which implies the desired result. ut

Acknowledgments. The authors would like to thank Luis Silvestre for his
useful comments.

References

1. Alberti, G.: Some remarks about a notion of rearrangement. Ann. Scuola Norm. Sup.
Pisa Cl. Sci. 4, 457–472 (2000)
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