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ON THE RELAXATION OF VARIATIONAL INTEGRALS IN
METRIC SOBOLEV SPACES

OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

ABSTRACT. We give an extension of the theory of relaxation of variational
integrals in classical Sobolev spaces to the setting of metric Sobolev spaces.
More precisely, we establish a general framework to deal with the problem of
finding an integral representation for “relaxed” variational functionals of vari-
ational integrals of the calculus of variations in the setting of metric measure
spaces. We prove integral representations theorems, both in the convex and
non-convex case, which extend and complete previous results in the setting of
euclidean measure spaces to the setting of metric measure spaces.

1. INTRODUCTION

Let (X,d, ) be a metric measure space, where (X, d) is a separable and compact
metric space and p is a positive Radon measure on X. Let p €]1,00[ be a real
number and let {L,} be a field of Carathéodory integrands over X (see the be-
gining of §2.2 for more details) assumed to be both p-coercive, see (2.8), and of
p-polynomial growth, see (2.9). Let m > 1 be an integer and let O(X) be the
class of all open subsets of X. In this paper, we are concerned with the prob-
lem of finding an integral representation for the “relaxed” variational functional
E:WiP(X;R™) x O(X) — [0, 00] given by

E(u; A) = inf{ lim / Ly (Vuy(z))dp(z) - AX;R™) 3wy, — uin Lz(X;Rm)} :
n—ooJ A
where A(X;R™) := [A(X)]™, with A(X) a subalgebra of the algebra of all contin-
uous functions from X to R, which contains the constants and enough cut-off func-
tions (see the begining of §2.1 for more details), and the operator V, from A(X; R™)
to Le?(X;RY) with N > 1 an integer, is a gradient over A(X;R™), see (2.3). For
example, A(X) can be the algebra of all restrictions to the closure of a bounded
open subset of RN of C'-functions from RY to R or, more generally, the algebra
of all Lipschitz functions from X to R (see Remark 2.1). The (u, p)-Sobolev space
WLP(X;R™) with respect to the metric measure space (X, d, u1) is defined as the
completion of A(X;R™) with respect to the norm ||ul| pp (xmm) +[IV ]| Lz (x g < v
where M™*¥ is the space of all m x N matrices and V,, called the p-gradient, is
obtained from V by projection over a suitable “normal space” to u (see §2.1 for
more details).

The present paper is a first attempt to establish a general framework to deal with
the problem of representing E in the setting of metric measure spaces. More pre-
cisely, we find under which conditions the “relaxed” variational functional E has

Key words and phrases. Relaxation, variational integral, Sobolev spaces with respect to a
metric measure space, integral representation, quasiconvexification with respect to a measure.
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an integral representation of the form

(1.1) B(u; 4) = /A L. (V,u(x))du(x)

for all u € W, P(X;R™) and all A € O(X) with L, : T;"(z) — [0,00], where
T/™(x) is the m-tangent space to u at z, i.e., M™*N = T/ (z) @' N(x) with
N;*(x) being the m-normal space to p at x mentioned above. We also find a
representation formula for L,.
In the setting of euclidean measure spaces, such representation problems was stud-
ied, in the one hand, in the convex case in [BBS97, AHMO03, CPZ03, AHM04], and,
on the other hand, in the non-convex case in [Man00, Man05] when p is a “super-
ficial” measure restricted to a smooth manifold. Note also that the study of the
lower semicontinuity of variational integrals of type (1.1) was treated in [Fra03] (see
also [Moc05]). In the present paper we prove the following two main integral rep-
resentation results which extend and complete these previous works to the setting
of metric measure spaces both in the convex and non-convex case.
Firstly, in the convex case, i.c., when the functions L, : 1,7 (z) — [0, 00] given by
Lo(@) = il | Lel€+0)
are convex, we prove that (1.1) holds with L, = L, (see Theorem 2.13). Secondly,
in the non-convex case, i.e., when the functions Ex are not necessarily convex, we
prove, under suitable conditions on the metric measure space (X,d,u) and the
(1, p)-Sobolev space W, ?(X;R™), see (Co), (C1), (Ca), (C3), (A1), (A2) and (Az)
in §2.2.2, that (1.1) holds with L, = Q,, L, where Q,, L, : T,*(x) — [0, 00] is given
by

Q. L:(§) = ,lii% inf {][Q ( )Ly(g + Vyw(y))du(y) : w € Wi:g(Qp($)§Rm)} )
where Wﬁ:g(Qp(x);Rm) ={weWLP(X;R™):w=0in X\ Q,(z)} and Q,(x) is
the open ball centered at z € X with radius p > 0 (see Theorem 2.20). According
to the classical theory of relaxation, we can say that this formula plays the role
of the classical Dacorogna’s quasiconvexification formula in the euclidean Lebesgue
setting (see [Dac08] for more details). It is then natural to call {Q,L,} the p-
quasiconvexification (or the quasiconvexification with respect to u) of {L;}.

The plan of the paper is as follows. In §2.1, Sobolev spaces with respect to a metric
measure space are introduced by using the notion of “normal and tangent space”
to a measure as developped in [BBS97, §2], [AHMO3, §7] and [Man05, §2] (see also
[Zhi96, Zhi00]) in the setting of euclidean measure spaces. In §2.2, we state the
main results of the paper, i.e., Theorem 2.13 in §2.2.1 for the convex case and
Theorems 2.15, 2.18 and 2.20 in §2.2.2 for the non-convex case. In Section 3, we
recall two results, i.e., an interchange theorem of infimum and integral, see Theorem
3.5, and De Giorgi-Letta’s lemma, see Lemma 3.6, that we use in Section 4 to prove
the main results of the paper. The interchange theorem is the principal ingredient
in the proof of Proposition 2.10 in §4.1, which is used, in the one hand, to prove
Theorem 2.13 in §4.2, and, in the other hand, to establish, together with De Giorgi’s
slicing method, a more useful “relaxed” formula for the variational functional E,
see Lemma 4.8 (see also Lemma 4.5). De Giorgi-Letta’s lemma combined with
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De Giorgi’s slicing method are the essential tools in the proof of Theorem 2.15 in
§4.3. Theorem 2.20 is established in §4.5 by using again De Giorgi’s slicing method
together with Theorem 2.18 whose proof, given in §4.4, is adapted from [BFM9S,
Lemmas 3.3 and 3.5] and uses Lemma 4.8 and Theorem 2.15.

Some basic notation. The open and closed balls centered at z € X with radius
p > 0 are denoted by:

¢ Qpfa):={ye X :dy) <pl:
. Qp(m) = {y € X :d(z,y) Sp}.

For x € X and p > 0 we set

0Q,(@) = Q@) \ Q@) = {y € X 1 d(,y) = p}.
For A C X and € > 0 we set:
o A (c ) = {r e X dist(z, 4) <e;
o AT(e {x € X : dist(z, A) > s},

where dist(z, A) 1r61f d(z,a).

2. MAIN RESULTS

2.1. Sobolev spaces with respect to a metric measure space. Let (X, d) be
a separable and compact metric space and let u be a positive Radon measure on
X. Let C(X) be the algebra of all continuous functions from X to R and let A(X)
be a subalgebra of C'(X) such that 1 € A(X). We assume that A(X) satisfies the
Uryshon property, i.e., for every K C V. C X with K compact and V open, there
exists p € A(X) such that p(x) € [0,1] for allx € X, p(x) =0 for allz € X \V
and p(z) =1 for all x € K. Such a function ¢ € A(X) is called a Uryshon function
for the pair (X \ V, K).

Remark 2.1. For (X,d) = (Q,|- — - |) where Q is a bounded open subset of RY
and | - | is the norm in R, the set C*(Q) (of all restrictions to Q of C'-functions
from RY to R with compact support) is a subalgebra of C(£2) which contains 1
and satisfies the Uryshon property. More generally, the set Lip(X) of all Lipschitz
functions from X to R is a subalgebra of C(X) containing 1 and verifying the
Uryshon property.

Denote the class of all subsets K of X such that either K = A’(g), with A an
open subset of X, ¢ >0 and i € {—,4+}, or K = @p(x), with x € X, p > 0 and
n(0Q,(x)) =0, by K(X). Let N > 1 be an integer and let D : A(X) — LZO(X;]RN)
be a linear operator such that:

(2.1) D(fg) = fDg+gDf for all f,g € A(X);
(2.2) for every f € A(X), every K € K(X) and every ¢ € R,
if f(x) = cfor all z € K then Df(x) =0 for p-a.a. z € K.

Let m > 1 be an integer, let M™*® be the space of all real m x N matrices,
let A(X;R™) := [A(X)]™ and let V : A(X;R™) — L°(X;M™*N) be the linear
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operator given by
Duq
Vu = with v = (u1, -+, Um).
Du,,
Taking (2.1) into account it is easy to see that
(2.3) V(fu) = fVu+Df @u for all u € A(X;R™) and all f € A(X).
(Note that V = D when m = 1.) For each u € A(X;R™), set

(2.4) A= {v € AX;R™) :v(x) = u(z) for all z € supp(u)},

where supp(u) denotes the support of the measure p, i.e., supp(u) is the smallest
closed set F' C X such that u(X \ F) =0, and consider H" defined by

Hy = {w € LZO(X;M’”XN) cw(z) = Vo(z) for pra.a. z € X with v € .Aum}

(Note that A™ = [AL]™ and H™ = [HL]™.) Noticing that HJ* (which corresponds
to H}" with u = 0) is a linear subspace of L*(X;M™ V), for p-a.e. z € X, we
introduce NJ*(x) € M™*N given by

N (z) == {w(x) Tw € 'Hgl}.

Remark 2.2. In fact, N*(x) = {Vu(z) : v € AF'} for p-a.a. x € A, where
o corresponds to A7 with w = 0. The sets H]' will be useful in the proof of
Proposition 2.10 in §4.1.

Then, for p-a.e. z € X, N;(x) is a linear subspace of M™*N that we call the
m-normal space to p at z. For p-a.e. z € X, the linear subspace T))*(z) of MmN
given by M™*N = T (z) &+ N (z) is called the m-tangent space to y at « and the
orthogonal projection on T}/*(z) is denoted by Pj*(x) : M™*N — T (z). (Note
that N"(x) = [Ny («)]™ and T(z) = [T} (x)]™.) Taking (2.3) and (2.2) into
account we see that the linear operator V,, : A(X;R™) — L2 (X; M™*N) defined,
for p-a.e. x € X, by
Py (x)(Duy(x))
Vouu(z) = RT(I’)(VU(I)) = with u = (w1, -+, um)
P (&) (Dt (1))
satisfies the following properties:

(2.5) Vu(fu) = fVuu+D,f ®ufor all u € A(X;R™) and all f € A(X);
(2.6) for every f € A(X), every K € K(X) and every c € R,
if f(z) =cfor all z € K then D, f(z) =0 for p-a.a. z € K,

where D, f corresponds to V,, f with m = 1. Moreover, we have

Lemma 2.3. The linear operator V,, is compatible with the equality p-a.e., i.e.,

(2.7) ifue AX;R™) and if v € A} then V,u(x) = Vyu(z) for p-a.a. xz € X.
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Proof. If v € A(X;R™) and if v € A" then, for y-a.e. x € X, V(u —v)(z) €
N*(z) and so P} (z)(V(u—v)(z)) = 0. Noticing that Vu = Vo+V (u—v) it follows
that P (z)(Vu(z)) = P (z)(Vu(z)) for pra.a. z € X, ie., Vyu(z) =V, o(z) for
paa zeX. B

Let 1 < p < oo be a real number. The (u,p)-Sobolev space Wi?(X;R™) with
respect to the metric measure space X = (X, d, u) is defined as the completion of
A(X;R™) with respect to the norm

HUHW;P(XRm) = ”uHLﬁ(X;Rm) + ||Vu“||Lﬁ(X;meN)-

Since ||V yull e xpmxny < ||u||Wﬁ,p(X;Rm) for all u € A(X;R™) the linear map V,
from A(X;R™) to LE(X;M™*N) has a unique extension to W;?(X;R™) which
will still be denoted by V,, and will be called the p-gradient.

Remark 2.4. When X is the closure of a bounded open subset €2 of RY and p is the
Lebesgue measure on €2, we retreive the (classical) Sobolev spaces WP (Q;R™). If
X is a compact manifold M and if p is the superficial measure on M, we obtain
the (classical) Sobolev spaces WP (M;R™) on the compact manifold M. For more
details on the various possible extensions of the classical theory of the Sobolev
spaces to the setting of metric measure spaces, we refer to [Hei07, §10-14] (see also
[Hajo3]).

Remark 2.5 (generalization of Lemma 2.3). Given A € O(X) set:
o AT'(A) := {v € A(X;R™) :v(x) =0 for all € supp(p) N A};
o N (z,A) = {Vv(a:) ‘v E A}J"(A)} for p-a.a. z € A.
The following makes clear the link between N;/*(z) and NJ*(z, A).
Lemma 2.6. N}'(z,A) = N}]'(z) for p-a.a. z € A.

Proof. As Hy* C H{'(A) we have N,(xz) C Ny(z,A) for p-a.a. x € A. On the
other hand, let £ € N;*(z,A). Then { = Vu(z) with v € AF'(A). As A is open
we have @p(x) C A for some p > 0. As A(X) satisfies the Uryshon property, there
exists a Uryshon function ¢ € A(X) for the pair (X \ 4,Q,(x)). Set U := @v. Then
7 € AJ" because ¢(y) = 0 for all y € X\ A and v(y) = 0 for all y € supp(p)NA. On
the other hand, using (2.3) we see that Vi = Dp®v+¢Vu, and so Vi(z) = Vo(x)
since ¢(r) = 1 and v(x) = 0. It follows that { € N}*(x). B

The following lemma, which generalizes Lemma 2.3, is a consequence of Lemma
2.6.

Lemma 2.7. If v € A(X;R™) is such that v(x) =0 for all x € supp(u) N A, then
Vyv(z) =0 for p-a.a. x € A.

Proof. If v € A(X;R™) is such that v(x) = 0 for all z € supp(u) N A, then
v € Ag'(A), and so, for p-a.e. © € A, Vu(z) € N* (2, A). But, by Lemma 2.6,
N (x, A) = N(z) for p-a.a. x € A, which means that Vo(z) € N/ (z) for p-a.a.
z € A. It follows that P;*(Vu(z)) =0 for p-a.a. x € A, ie., V,v(z) =0 for y-a.a.
zeA 1
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2.2. Integral representation theorems. Let p €]1,00[ be a real number and
let {L.} be a field of Carathéodory integrands over X, i.e., to p-a.e. = € X
there corresponds a continuous function L, : M™*¥ — [0, o] so that the function
2+ L,(£) is p-measurable for all £ € M™*¥ . We assume that {L,} is p-coercive,
i.e., there exists C' > 0 such that

(2.8) Lo (€) > Cl¢fP for all € € M™*N and p-a.a. z € X,
and of p-polynomial growth, i.e., there exists ¢ > 0 such that
(2.9) L,(€) < c(1+|¢P) for all ¢ € M™*N and p-a.a. z € X.

Let O(X) be the class of all open subsets of X, let F : A(X;R™) x O(X) — [0, o00]
be the variational integral defined by

E(u; A) = /A Lo (Vu(@))du(x)

and let E: W1P(X;R™) x O(X) — [0,00] be the “relaxed” variational functional
of the variational integral £/ with respect to the strong convergence in L (X;R™),
ie.,

E(u; A) := inf {nhf;o E(up; A) : A(X;R™) 3 upy — win Lﬁ(X;R’”)} .
Note that the variational integral F is in general not “local”, i.e., u(x) = v(zx) for
p-a.a. x € X does not imply E(u; A) = E(v; A) for all A € O(X). However, as it
is stated in the following proposition, the variational functional £ can be rewritten

as the “relaxed” variational functional of a “local” variational integral depending
on the p-gradient. Let E : A(X;R™) x O(X) — [0, 00] be defined by

~

Blu A) = /A Lo (V yu(e))dp(a)
where, for yra.e. € X, Ly : 1,7 (z) — [0, 00] is given by

L = inf L, .
«(§) et 2(§+¢)
Remark 2.8. Tt is easy to see that, in the one hand, if {L,} is p-coercive then also
is {L,}, i.e.,

~

Ly (§) > Cl¢|P for all £ € T)"(z) and pra.a. z € X

with C > 0 given by (2.8), and, on the other hand, if {L,} is of p-polynomial
growth then also is {L,}, i.e.,

o~

Lo (§) <c(1+[€]P) for all £ € T)*(z) and pra.a. z € X
with ¢ > 0 given by (2.9).

Remark 2.9. If L, is continuous for p-a.a. = € X and if (2.8) holds, i.e., L, is
p-coercive, then Ex is continuous for p-a.a. x € X. Indeed, let & € Tlf“(:c) and
let {¢;}; C T}"(x) be such that |§; —&| — 0. As L, is continuous and, for every
¢ € NM(x), La(&) < Lo(§ + Q) for all i > 1 we have lim; o0 L2 (&) < La(§+ ()
for all ¢ € N}J*(z), and so lim; oo Ew(fl) < Ez(g) On the other hand, there is no
loss of generality in assuming that lim, L.(&) = lim; o L, (&) < 0o. Consider

71— 00

{G}i © N(2) such that L, (&) < Lo (& + () < Lo (&) + L for all i > 1. As (2.8)
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holds we see that the sequence {(;}; is bounded, and so (up to a subsequence) we
can assert that there exists ¢ € N;J*(z) such that [(; — (| — 0. From the continuity

of L, we deduce that lim, E,ﬂ (&)=L (E+¢) > Zw(g), and the result follows.

—1—00

Proposition 2.10. If (2.9) holds then

E(u; A) := inf{ lim E(un;A): AX;R™) S u, — u in Lﬁ(X;Rm)}

n—oo

for all w € WiP(X;R™) and all A € O(X).

Remark 2.11. Taking (2.7) into account it is easy to see that the variational integral
E is “local”, i.e., if u(x) = v(z) for p-a.a. © € X then E(u; A) = E(v; A) for all
A € O(X). Thus, the variational functional € : W P(X;R™) x O(X) — [0, o]
given by

-~ o . 1 . m
(2.10) Elus A) = E(u; A) ifue A(X,R )

00 otherwise

is well defined with respect to the equality p-a.e.. We can then rephrase Proposition
2.10 as follows: the variational functional F is the variational lower semicontinuous
envelope of £ with respect to the strong convergence in Lﬂ(X;Rm).

Remark 2.12. The (u,p)-Sobolev space W, ?(X;R™) is reflexive whenever p €
J1,00[. Indeed, the linear operator © : W1 *(X;R™) — LP (X;R™)x L (X; M™*N)
defined by ©(u) := (u, V,u) is an isometry, hence ©(W,?(X;R™)) is a closed linear
subspace of L (X;R™) x L? (X; M™*N). For p > 1 the product space LE(X;R™) x
LE(X;M™*N) is reflexive, and so is ©(W 17 (X;R™)).

2.2.1. The convex case. The following theorem gives, under (2.8) and (2.9), an
integral representation of the “relaxed” variational functional F in the reflexive
and convex case.

Theorem 2.13. If (2.8) and (2.9) hold and if L, is convex for p-a.a. v € X, then
F(u; 4) = /A Lo (V,u(2))du(e)
for all w € WiP(X;R™) and all A € O(X).

Remark 2.14. If L, is convex ff)r p-a.a. r € X then also is ZIA for p-a.a. x € X.
Indeed, let a €]0,1[ and let £, € T;*(x) and consider {(;}:,{¢;}i € N;*(w) such
that L (€) = lim; e Ly (€ + G) and Ly(€) = limjoo Lo (€ + (). Fix any i > 1.

~

As al + (1 —a)é; € NJJ'(z) we have L, (ag + (1 — )§) < Ly(a€ + (1 — ) +
aG+ (1 - a)&) = La(a(€ + ¢) + (1 - a)(E + ). Hence Ly(af + (1 - a)é) <
aLl,(E+G)+ (1 —a)L,(E+ () for all ¢ > 1 because L, is convex, and the result
follows by letting ¢ — oo.

However, the converse implication is not true. Indeed, if for y-a.e. z € X, L, :

M™>*N — [0, 0] is of the form
L&) = Li (P (x)(€)) + Lo (€ — P (2)(€)),

with Ly, Ly : M™*N — [0, 00] such that L; is convex and L is not convex, then
both L, is not convex and L : T;]*(z) — [0,00] is convex.
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2.2.2. The non-convex case. In the non-convex case, i.e., when the functions Egt
are not necessarily convex, the following theorem asserts that under (2.8) and (2.9)
the variational functional E has always a “general” integral representation.

Theorem 2.15. If (2.8) and (2.9) hold then
B(u; 4) = / Nu(@)dp(2)
A
Jor all w € WiP(X;R™) and all A € O(X) with A\, € L},(X) given by

iy P Q@)
Aule) =l =5 @)

To refine the “general” integral representation given by Theorem 2.15, we need the
following four conditions:
(Co) the p-gradient is closable in W, ?(X;R™), i.e., for every u € WL P(X;R™)
and every A € O(X), if u(zx) = 0 for p-a.a. € A then V,u(z) = 0 for
p-a.a. T € A;
(Cq) for every A € O(X) and every countable family {Q;};cs of disjoint open
balls of A such that u(0Q;) = 0 for all i € T and p(A \ Uier@;) = 0, if
u € WiP(X;R™) and if, for every i € I, v; € WP (Qi;R™), then the
function v : X — R™ defined by

v::{ u inX\A

V; in Ql

belongs to W'E(A; R™), where, for O € O(X),
Wi:ﬁ(O;Rm) = {w IS W;»P(X;Rm> cw = in X \ O};

(C2) X satisfies a (u, p)-Poincaré inequality, i.e., there exists K = K(u,p, X) > 0
such that

(2.11) </Q p(@lv(m)l”du(x)) < pK (/Q p(w)IVw(:ﬂ)Ipd#(w)>

for all p <1 and all v € W;:g(Qp(m);Rm), where Wﬁ:g(Qp(x);Rm) corre-
sponds to W, 2(Q,(x); R™) with u = 0;

(C3) X satisfies the Vitali covering theorem, i.e., for every A C X and every
family F of closed balls in X, if inf{p > 0 : Q,(z) € F} = 0 for all
x € A then there exists a countable disjointed subfamily G of F such that

(A \ Ugeg@Q) = 0 (in other words, A C (Ugeg @) UN with u(N) = 0).

Remark 2.16. From Remark 2.5 we see that the u-gradient is closable in A(X; R™).
The assumption (Cyp) asserts that the closability of the u-gradient can be extended
from A(X;R™) to W, P(X;R™).

Remark 2.17. As p is a Radon measure, if X satisfies the Vitali covering theorem,
i.e.,, (C3) holds, then for every A € O(X) and every ¢ > 0 there exists a count-
able family {Q,,(z;)}icr of disjoint open balls of A with x; € A, p; €]0,¢[ and
1(9Q,, (w:)) = 0 such that u(A\ UierQ,, () = 0.
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Theorem 2.18. Under (2.8) and (2.9), if (Co), (C1), (C2) and (C3) hold, then

p—0

Au(z) = lim inf {][Q ( )Ey(vﬂv(y))du(y) NS Wﬁ:ﬁ(Qp(x);Rm)}

p—0

—  lim inf {][ Ly(V,uly) + Vw(y))dp(y) : w € Wﬁjg(Qp(w);Rm)}
Q(x)

for all w € WiP(X;R™) and p-a.a. x € X.
In order to “localize in £ the density formula given by Theorem 2.18 we need to
consider the three assumptions below.
(A1) Foreveryu € W, P(X;R™)and p-a.e. x € X there exists u, € W, P(X;R™)
such that:

(2.12) Vuusz(y) = Vyu(z) for praa. y € X;
.1
(2.13) lim — [u(y) — e (y)Pdply) = 0.
p=0p Qp(z)

(Ag) For every x € X, every p > 0 and every t €]0,1] there exists a Uryshon
function ¢ € A(X) for the pair (X \ Q,(), Q;,(x)) such that

o
D, ol oo (xryy <
|| 12 IlLu (X,]R ) p(]. _ t)

for some o > 0.

(A3) The measure p is doubling, i.e., (Q,(z)) < Bu(Qs (x)) for some 8 > 1, all
p>0andall z € X. (In particular, X satisfies the Vitali covering theorem,
i.e., (C3) holds.) We futhermore assume that for p-a.e. z € X,

(2.14) lim T Q@)
t—1- p—0 pu(Q,(x))
Remark 2.19. If there is 6 :]0, 1[— [1, oo with lim;_,; §(¢) = 1 such that u(Q,(z)) <

0(t)p(Qep(z)) for all p > 0, all z € X and all ¢ €]0, 1], then (As) holds.
Theorem 2.20. Under (2.8) and (2.9), if (Co), (C1), (C2), (A1), (A2) and (As)
hold, then

Bl A) = [ QuL.(Vula))du(z)

for alluw € WiP(X;R™) and all A € O(X) with Q, L, : T;""(x) — [0,00] given by

QL. (§) = ;ir% inf {][ ( )Ly(f + Vyw(y))du(y) : w € Wi:g(Qp(f);Rm)} .
— Qp z

Remark 2.21. According to the classical theory of relaxation, we can say that this

formula plays the role of the classical Dacorogna’s quasiconvexification formula in

the euclidean Lebesgue setting (see [Dac08] for more details). It is then natural to

call {@Q,L,} the u-quasiconvexification (or the quasiconvexification with respect to

p) of {Lz}.
3. AUXILIARY RESULTS

3.1. Interchange of infimum and integral. Let (A,d) be a locally compact
metric space that is o-compact, let u be a positive Radon measure on A and let Y
be a separable Banach space.
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3.1.1. The p-essential supremum of a set of p-measurable functions. Let M, (A;Y)
be the class of all closed-valued p-measurable multifunctions! from A to Y and
let My (A;Y) = {I' € Mu(A;Y) : T'(z) # 0 for p-a.a. @ € A}. The following
proposition is due to Valadier (see [Val71, Proposition 14]).

Proposition 3.1. Let F be a nonempty subclass of M;,(A;Y). Then, there exists
I'e M}, (A;Y) such that:
(i) for every A € F, A(z) C T'(z) for p-a.a. x € A;
(ii) f T7 € ML(A;Y) and if for every A € F, A(x) C I''(x) for p-a.a. x € A,
then T'(z) C TV(z) for p-a.a. x € A.

Note that I' given by Proposition 3.1 is unique with respect to the equality p-a.e.
Valadier called it the p-essential upper bound of F. Here is the definition of the
p-essential supremum of a set of y-measurable functions.

Definition 3.2. Let H be a set of u-measurable functions from A to Y. By the u-
essential supremum of H we mean the p-essential upper bound of {{w} : w € H},
where {w} : A=Y is defned by {w}(z) := {w(z)}. Thus, if we denote the u-
essential supremum of H by I', we have:
(i) {w(z):w e H} CT(z) for p-a.a x € A;
(i) if I € M,(A;Y) and if {w(z) : w € H} C I(x) for p-a.a x € A, then
I(z) Cc I'(x) for p-a.a. z € A.

The following lemma gives a (classical) representation of the u-essential supremum
(see [BV8S]).

Lemma 3.3. Let p > 1 be a real number, let H C L (A;Y) and let T' be the -
essential supremum of H. Then, there exists a countable subset D of H such that
I'(z) = cl{w(z) : w € D} for p-a.a. x € A, where cl denotes the closure in Y.

3.1.2. Interchange theorem. In what follows, by a Urysohn function for a pair (F, G)
of disjoint closed subsets F' and G of A we mean a continuous function ¢ : A — R
such that ¢(z) € [0,1] for all x € A, ¢(x) =0 for all z € F and ¢(x) = 1 for all
r € G. Let p > 1 be a real number and let H C LL(A;Y). The following definition
was introduced in [AHMO3].

Definition 3.4. We say that H is normally decomposable if for every w,w € H
and every K,V C A with K compact, V open and K C V, there exists a Urysohn
¢ function for the pair (A\ V, K) such that ¢w + (1 — ) € H.

Let {L,} be a field of Carathéodory integrand over A, i.e., to y-a.e. x € A there
corresponds a continuous function L, : Y — [0, 00] so that the function x — L, (&)
is p-measurable for all £ € Y. The following theorem is a consequence of [AHMO03,
Theorem 1.1].

Theorem 3.5. If H is normally decomposable and if {L,} is of p-polynomial
growth, i.e., there exists ¢ > 0 such that Lp(§) < c(1 + [£|P) for all § € Y and
all p-a.a. x € A, then

inf Ll.wxdx:/ inf L,(&)du(x
int [ Low@)dut@) = [ ot Lo(auta)
with T': A=ZY given by the p-essential supremum of H.

LA multifunction I' : A=Y is said to be closed-valued if I'(z) is closed for p-a.a. @ € A, and
p-measurable if for every open set U C A, {x € A: T'(z) NU # @} is p-measurable.
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3.2. De Giorgi-Letta’s lemma. Let X = (X, d) be a metric space, let O(X) be
the class of all open subsets of X and let B(X) be the class of all Borel subsets
of X, i.e., the smallest o-algebra containing the open (or equivalently the closed)
subsets of X. The following result is due to De Giorgi and Letta (see [DGL77] and
also [But89, Lemma 3.3.6 p. 105]).

Lemma 3.6. Let S : O(X) — [0,00] be an increasing set function, i.e., S(A) <
S(B) for all A, B € O(X) such A C B, satisfying the following four conditions:

(i) S(0) = 0;
(ii) S is superadditive, i.e., S(AUB) > S(A)+S(B) for all A, B € O(X) such
that AN B = {;

(iii) S is subadditive, i.e., S(AUB) < S(A) + S(B) for all A, B € O(X);
(iv) there exists a finite Radon measure v on X such that S(A) < v(A) for all
A€ O(X).
Then, S can be uniquely extended to a finite positive Radon measure on X which
is absolutely continuous with respect to v.

4. PROOF OF THE MAIN RESULTS
4.1. Proof of Proposition 2.10. We divide the proof into four steps.
Step 1. Another formula for E. Let £ : WLP(X;R™) x O(X) — [0,00] be
defined by

£(u; A) := inf {E(v;A) ve AZ"”}.

The following lemma makes clear the link between £ and E.

Lemma 4.1. For every u € WP (X;R™) and every A € O(X),

(4.1)  E(u;A) = inf{ lim E(un; A) : AXGR™) 3wy — uin Lﬁ(X;R’”)} .
Proof of Lemma 4.1. Fixu € W,;?(X;R™) and A € O(X) and denote the right-
hand side of (4.1) by E(u; A). As E(v; A) > E(v; A) for all v € A(X;R™) we have
E(u; A) > E(u; A). Thus, it remains to prove that

(4.2) E(u; A) > E(u; A).

Fix any € > 0 and consider {u,}, C A(X;R™) with u,, — w in L% (X;R™) such
that &(u; A) + 5 >lim, . E(un; A). To every n > 1, there corresponds v, € A}
such that &(un; A) + 5§ > E(vn; A). Hence v, — win LE(X;R™) and E(u; A) +¢ >
lim E(vp; A) > E(u; A), and (4.2) follows by letting e — 0. B

—nN—00

Step 2. Integral representation of the variational functional £. We now
establish an integral representation for the variational function £. First of all, it
easy to see that

ewA)= it [ L))
for all w € A(X;R™) and all A € O(X), where H™(A) is given by
H(A) = {w € LZO(A;MWXN) cw(z) = Vou(z) for pra.a. © € A with v € A;”}

with A”" defined in (2.4). On the other hand, we have
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Lemma 4.2. The set H'(A) is normally decomposable for all u € W;*’(X;Rm)
and all A € O(X).

Proof of Lemma 4.2. Let u € A(X;R™) and A € O(X). Fix K,V C A with
K compact, V open and K C V|, fix w,w € HT(A) and consider v,o € A!" such
that for p-a.e. z € A, w(x) = Vou(z) and w(z) = Vi(z). As A(X) satisfies the
Uryshon property, there exists a Uryshon function ¢ € A(X) for the pair (X\V, K).
Then ¢ := |4 is a Uryshon function for the pair (A \ V, K). On the other hand,
using (2.3) we have V(gpv + (1 — ¢)0) = ¢Vu + (1 — ¢)Vi + Dp @ (v — 0), and
so V(pv+ (1 —¢)0)(x) = p(x)w(x) + (1 — ¢(z))w(z) for p-a.a. © € A. Moreover,
wv + (1 — )0 € AT and consequently ¢pw + (1 — ¢p)w € HI*(A). B

From now on, fix u € A(X;R™) and A € O(X). As {L,} is of p-polynomial
growth, i.e., (2.9) holds, and H"(A) is normally decomposable by Lemma 4.2,
from Theorem 3.5 we deduce that

(43) Sy = [ it L(©dn(o)

el (z,A)

with (-, A) : A—=M™*¥ given by the p-essential supremum of H™(A).

Step 3. Refining the integral representation of £. Finally, to refine the
integral representation of £ in (4.3), we need the following lemma.

Lemma 4.3. T'y(7, A) = N (z) + {V,u(x)} for p-a.a. z € A.

Proof. From Lemma 3.3 there exists a countable subset D, (A) of H]'(A) such
that

(4.4) Ly(z,A) = cl{w(z) : w € Dy(A)} for pra.a. z € A

Fix any w € D,(A). By definition of H]}'(A), there exists v € A} such that for
pae x € A w(x) = Vo(z). But Vyu(z) = Vyu(z) for p-aa. o € X by Lemma
2.3, hence w(z) = Vu(z) — V,v(z) + Vyu(z) for praa. x € A, where for p-a.e.
r € A, Vu(z) — Vyu(z) € N (z), and so w(z) € NJ'(z) + {V, u(x)} for p-a.a.
r € A. Thus {w(z) : w € Dy(A)} € N (z) + {V,u(z)} for p-a.a. v € A. Using
(4.4) it follows that

Lu(z, A) C N (z) + {V,u(z)} for p-a.a. x € A.

Let ', : X—=M™ ¥ be the p-essential supremum of H™ (which corresponds to
H™(A) with A = X). If w € H™ then w|a € H™(A), and so 'y(xz) C Ty(z, 4)
for p-a.a. © € A because, from Lemma 3.3, I'y(2) = cl{w(z) : w € D,} for p-a.a.
x € A with D,, a countable subset of H]'. Hence, the proof is completed by showing
that

(4.5) N (z) +{Vuu(z)} C Ty(x) for p-a.a. z € A.

For pra.e. = € A, let & € N (z) + {V,u(x)}. Then P,(z)(§ — Vu(z)) = 0,
hence { — Vu(z) € N;(z) and so there exists W € Hg' (which corresponds to
Hir with w = 0) such that £ — Vu(z) = w(z). Setting w := Vu we then have
§ = (w+w)(z) with w+d € Hy'. Thus N (z) +{V,u(z)} C {w(z): w € H}'} for
p-a.a. € A, and (4.5) follows because, by definition of the p-essential supremum,
{w(z) :we H"} CTy(zx) for praa. z€ X. A

This completes the proof of Proposition 2.10. B
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4.2. Proof of Theorem 2.13. Fix A € O(X) and define the increasing set F :
W, P(X;R™) — [0, 00] by

(4.6) Flu) = /A Lo (Vu(a))dp(z).

(Note that F(u) = E(u; A) for all u € A(X;R™), where £(+; A) : WiP(X;R™) —
[0,00] is defined in (2.10).) From Remark 2.8 we see that {Em} is both p-coercive
and of p-polynomial growth, i.e.,

(4.7)  ClEPP < Lo(€) < c(1+[¢P) for all € € T (z) and p-aa. x € X

with C' > 0 and ¢ > 0 given respectively by (2.8) and (2.9). Recalling that p is finite
and using the second inequality in (4.7) and the continuity of L, (see Remark 2.9),
from Vitali’s convergence theorem we deduce that F is continuous with respect to
the strong convergence in Wl}’p (X;R™). Hence, recalling that A(X;R™) is dense
in W, P(X;R™) with respect to the strong convergence in W, ?(X;R™) and taking
Proposition 2.10 into account, for all u € W}?(X;R™) there is {u, }, C A(X;R™)
such that:

e u, — uin W P(X;R™) and so u, — u in LF(X;R™);
o Flu) = limy oo F(tp) = limy, o0 & (un; A) > E(u; A),
which shows that F > E(-; A). Define F ,F : WiP(X;R™) — [0, 00] by:

. ?w(u) = inf{ lim F(up) : up — u in Wﬁ’p(X;Rm)};
o F'(u):=inf{ lim F(up): up, — u in Lﬁ(X;Rm)}.

n—oo
Since ET is convex for p-a.a. z € X, the functional F is convex, and so F'=F
because F is strongly continuous in W;’p (X;R™). On the other hand, consider
u e WiP(X;R™) and {up}, C WLP(X;R™) such that w, — u in L5(X;R™)
and lim, o F(upn) = limy, o0 F(upn) < co. Using the first inequality in (4.7) we
deduce that sup,, ||un||Wj~P(X;Rm) < 00, hence (up to a subsequence) u,, — u in
WJ’P(X; R™) because Wﬁ’p(X; R™) is reflexive (since p €]1, 0o[, see Remark 2.12),
and so lim,, . F(u,) > F (u). Thus F~ > F" and consequently F = F because
F>F". As E(;A) > F we have E(-; A) > F by using Proposition 2.10, and the
proof is complete. B

Remark 4.4. From the proof of Theorem 2.13 we can extract the following lemma
which asserts that for A € O(X) and when (2.9) is satisfied, E(-, A) is the lower
semicontinuous envelope of F defined in (4.6) with respect to the strong convergence
in L (X;R™).

Lemma 4.5. If (2.9) holds then

(4.8)  E(u;A) = inf{ lim /Afm(vuun(x))du(x) : Wi’p(X;Rm) S Uy, L u}

n—oo

for allw € WiP(X;R™) and all A € O(X).
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4.3. Proof of Theorem 2.15. Fix u € W,?(X;R™) and define S, : O(X) —
[0, 00] by

Su(A) == E(u; A).

Taking Lemma 4.5 into account and using the second inequality in (4.7) we see that
(4.9) Su(A) < / c(1+ |Vyu(z)P)du(z) for all A € O(X).
A

Thus, the condition (iv) of Lemma 3.6 is satisfied with v = ¢(1 + |V u[?)dp (which
is absolutely continuous with respect to ). On the other hand, it is easily seen that
the conditions (i) and (ii) of Lemma 3.6 are satisfied. Hence, the proof is completed
by proving the condition (iii) of Lemma 3.6, i.e.,

(4.10) Su(AUB) < 8,(A) + S,(B) for all A, B € O(X).

Indeed, by Lemma 3.6, the set function S, can be (uniquely) extended to a (fi-
nite) positive Radon measure which is absolutely continuous with respect to p,
and the theorem follows by using Radon-Nikodym’s theorem and then Lebesgue’s
differentiation theorem. To show (4.10) we need the following lemma.

Lemma 4.6. IfU,V,Z, T € O(X) are such that Z C U and T C V, then
(4.11) Su(ZUT) <8,(U)+ S, (V).

Proof of Lemma 4.6. Let {u,}, and {v,}, be two sequences in A(X;R™) such
that:

(4.12) Uy, — U in Lfb(X;Rm);
(4.13) vp — win L (X5 R™);
(4.14) lim [ L,(Vu,(x))du(z) = S, (U) < oo;

n—oo U

(4.15) lim | L, (Vou,(z))du(z) = S, (V) < oo.

n—oo [y,
Fix ¢ €]0,dist(Z, 0U)[ with QU := U\ U, fix any n > 1 and any ¢ > 1 and consider
W, ,W;" C X given by:

o« W =2~ (g + %) = {:z: € X :dist(z, 2) < & + 7@;;)5};

° Wi+ ::Z+(%+%):{xeX:%—%—é—‘;SdiSt(x,Z)},

where i € {1,---,q}. As A(X) satisfies the Uryshon property, for every i €
{1,---,q} there exists a Uryshon function ¢; € A(X) for the pair (W;",W,").
Define w}, € A(X;R™) by
w! = @ity + (1 — 03)vy,.
Setting W; := X \ (W,” UW,") and using (2.3) and (2.2) we have
Vuy, in W,~

Vw!, = ¢ Dp; @ (un — vp) + ¢;Vu, + (1 — ¢;)Vu, in W;
Vv, in W;r.
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Noticing that ZUT = ((ZUT)NW;" )U(WNW;)U(TNW;H) with (ZUT)nW,” C U,
TAWS CcVand W:=Tn{zeU:$<dist(z,Z) < £} we deduce that

(4.16) /ZUTLx(Vw;)du < /ULI(Vun)du+/VLI(an)du

+ ] L(Vuide
wnw;
for all ¢ € {1,--- ,q}. Moreover, from (2.9) we see that for each i € {1,--- ,q},
(4.17) / Lw(vwib)d:u < O‘HDSOi”Zzﬁo(X;RN)Hun - Un”]zﬁ(X;Rm)
Wnw;
+a/ (1+ [Vun|? + [Vou|P)du
WNW;

with a := 2%¢. Substituting (4.17) into (4.16) and averaging these inequalities, it
follows that for every n > 1 and every ¢ > 1, there exists i, , € {1, -, ¢} such
that

/ Lo (Vwirma)dy < /Lw(Vun)dp—I—/ L,(Vuy)du
ZuT U %

q
o
"’g Z ||D<Pi||1£ﬁo(x;RN) [lun — Un”iﬁ(X;Rm)
i=1

@ (mX) + [ wulean+ [ |wn|Pdu) |
q U v
On the other hand, by (4.12) and (4.13) we have:
o i g ey =0

1 ‘n, _ P _
® nh_)néo ”w; ? u”Lﬂ(X;Rm) = 0 for all q>1.

Moreover, using (4.14) and (4.15) together with (2.8) we see that:

n—oo

o lim [ |Vu,(z)Pdu(z) < oo;
U

o lim [ |Vu,(2)Pdu(r) < cc.
%

Letting n — oo (and taking (4.14) and (4.15) into account) we deduce that for
every q > 1,

(418)  Su(ZUT)< lim | Lo(Vuwio(x))du@) < Su(U) +Su(V) + %

with & := a(p(X) +limy oo fi; [V (2)[Pdp(z) +limp oo [i, [Von(2)[Pdp(z)), and
(4.11) follows from (4.18) by letting ¢ — co. W

We now prove (4.10). Fix A, B € O(X). Fix any € > 0 and consider C,D € O(X)
such that C ¢ A, D C B and

[ e+ 1V a@)P)duta) <<
E

with B := AUB\ CUD. Then 8,(E) < ¢ by (4.9). Let C,D € O(X) be such
that C c ¢, C c A, D c D and D C B. Applying Lemma 4.6 with U = C U D,
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V=T=Eand Z=CUD (resp. U=A,V =B, Z=C and T = D) we obtain
Su(AUB) <8, (CUD) +e (resp. Su(CUD) < S,(A) +8u(B)),
and (4.10) follows by letting e — 0. B

Remark 4.7. The method used in the proof of Lemma 4.6 is a variant of the so-called
De Giorgi’s slicing method. Note that the proof of Lemma 4.6 can be rewritten
(exactly in the same way) in considering (4.8) together with (4.7), in using (2.5)
and (2.6) instead of (2.3) and (2.2), and in replacing (in the text of the proof) the
integrand “L,” by “Zm”, the space “A(X;R™)” by “Wl}’p(X;Rm)”, the operator
“D” by “D,,” and the operator “V” by “V,”. On the other hand, by De Giorgi’s
slicing method we can also establish the following result.

Lemma 4.8. If (4.7) holds (which is the case when (2.8) and (2.9) are satisfied)
then

(419)  E(u; A) = inf{ lim /Afm(vuun(af))du(w) F WL (AR™) 3 uy, % u}

n—0o0

for all w € WiP(X;R™) and all A € O(X), where
Wi,’g(A;Rm) = {v € Wj’p(X;Rm) U =uin X\A}.

Proof. Fix u € W,?(X;R™) and A € O(X) and denote the right-hand side of
(4.19) by £(u; A). Taking Lemma 4.5 into account and noticing that W15 (A; R™) C
WiP(X;R™) we have E(u; A) > E(u; A). Thus, it remains to prove that

(4.20) E(u; A) < E(u; A).

Let {un}n C W1P(X;R™) be such that

(4.21) uy — u in LB (X5 R™);

(4.22) lim Zgj(Vﬂun(w))d,u(a:) = FE(u; A) < <.
n—oo A

Fix § > 0 and set A; := {x € A : dist(z,0A4) > 6} with 9A := A\ A. Fix anyn > 1
and any ¢ > 1 and consider W, Wﬁ' C X given by

o W = A; (% n (ig;)é) _ {x € X : dist(z, As) < S + %},

e W= At (4 2) = {ve X i+ £ <dist(z, 40)],

% 3 3q
where ¢ € {1,---,¢q}. (Note that W, C A.) As A(X) satisfies the Uryshon
property, for every i € {1,--- ¢} there exists a Uryshon function ¢; € A(X) for
the pair (W;", W,"). Define w?, € WLE(A;R™) by
w! = i, + (1 — @;)u.
Setting W; := X \ (W,” UW,") C A and using (2.5) and (2.6) we have
V in W~

Vuwfl =< Dy @ (un —u) + i Vyuun + (1 — ;) Vyu in Wi
N in W;r.
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Noticing that A = W;,” UW; U (AN W,") we deduce that for every i € {1,--- , ¢},

(4.23) /A (Vi )iy < /A T (V i)t + / La(V,u)d

Anwt
—l—/ Ez(vuw;)du
Moreover, from the second inequality in (4.7) we see that for each ¢ € {1,--- ¢},

(4.24) / Ly(Vywy)du < a”DmOi”pzo(x;RN)H“n_U”ZL),I;(X;R"L)

ba [ @ Tl + V)
with a := 2?Pc. Substituting (4.24) into (4.23) and averaging these inequalities, it
follows that for every n > 1 and every ¢ > 1, there exists i, , € {1, , ¢} such
that

. , . 1 [ ~
/Lm(vuw;’"ﬂ)d,u < /Lz(Vﬂun)dquf/ Ly (V,u)dp
A A q.Ja

q
(0%
+g Z ”D#@i”pzo(x;RN) Hun - u”iﬂ(x;]Rm)
i=1

2w+ [ Wbt [ 19,07a).
q A A

On the other hand, by (4.21) we have

: ing _ 4||? -
nlingo [y “HLg(X;Rm) =0 for all ¢ > 1.

Moreover, using (4.22) together with the first inequality in (4.7) we see that
hm |V un () [Pdp(x) < oo.
A

Letting n — oo (and taking (4.22) into account) we deduce that for every ¢ > 1,
_ ~ . _ 1 [ ~ A
(125)  E(wA) < lm [ Lo(Vuwiro)dp < Blus A) + - / Lm(vuu)dﬂ+%
A

n—oo J A
with & := a(u(A) + limp oo [ |Vun(@)[Pdp(z) + [, |V,u(z)Pdu(z)), and (4.20)
follows from (4.25) by letting ¢ — co. B

4.4. Proof of Theorem 2.18. The proof is adapted from [BFM98, Lemmas 3.3
and 3.5] (see also [BB0O, §2]). Fix u € W P(X;R™) and define the set function
m, : O(X) — [0, 00] by

my(A) = inf { /A Lu(V,0(2))dul) : v € W,};g(A;Rm)} .

For each ¢ > 0 and each A € O(X), denote the class of all countable family
{Qi := Qp,(x;) }ier of disjoint open balls of A with z; € A, p; = diam(Q;) €]0,¢|
and p(9Q;) = 0 such that p(A\U;er@;) = 0 by V:(A), consider mg, : O(X) — [0, o0]

given by
mS,( mf{Zmu i) {Qitier € Ve(A )}

el
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and define m’ : O(X) — [0, 00| by

m; (A) :=supm;,(A) = lim m{ (A).
e>0 e—0

(Note that as X satisfies the Vitali covering theorem, see (Cz) and Remark 2.17,
we have V.(A) # 0 for all A € O(X) and all € > 0.)

Step 1. We prove that m*(A) = E(u; A) for all A € O(X). Taking Lemma
4.8 into account, it is easy to see that m,(A4) < E(u; A) and so my,(A) < E(u; A)
(because in the proof of Theorem 2.15 it is established that E(u;-) can be uniquely
extended to a finite positive Radon measure on X). Hence, it remains to prove that
(4.26) E(u; A) <m?(A)

with m}(A4) < co. Fix any € > 0. Given A € O(X), by definition of m$ (A), there
exists {Q;}ier € Vo(A) such that

(4.27) 3 m,(Qi) < mi(A) + g

Given any i € I, by definition of m, (Q;), there exists v; € W, (Q;; R™) (which
means that v; — u € Wi:g(Qi; R™)) such that

(4.28) / £ (Vyuvs(2)) () < ma(Qs) +

Define u. : X — R™ by
_fu imX\A
Ue = (o in Qi~
Then u. € WJE(A;R™) by (Cy). Moreover, because of (Co), V,uc(z) = V,v;(z)
for p-a.a. z € Q;. From (4.27) and (4.28) we see that

(4.29) /A Lo (Ve (2))dpa() < mS(A) + .

On the other hand, ||u. — u”iﬁ(X;R’”) = [ lue —ulPdu =3¢ [o, lvi — ulPdp. As
X satisfies a (u, p)-Poincaré inequality, see (Ca) and (2.11), and diam(Q;) €]0, €|
for all 7 € I, we have

(430) fuz —ullly gy < KPPY / IV ,0; — VulPdp
iel V@i
< 2PKPeP (Z / |V, vilPdp + / Vuupd,u>
iel Y Qi A

with K > 0. Taking the first inequality in (4.7) and (4.27) into account, from (4.30)
we deduce that

1
lue = wllZp xgmy < 27KPe” <C’ (m7,(4) +¢) +/ |Vuu|pdﬂ>
ACA A

which shows that ue — win L? (X;R™) as e — 0 because lim. o m§ (A) = mj (A) <
o0, and (4.26) follows from (4.29) by letting ¢ — 0 (and by noticing that E(u; A) <
lim, o [ Lo (Vtte (2))dp()).
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m2(Qp(@) _ iy Qo)

lim 2@, @ for p-a.a. =z € X.

my (Qp(z))

Step 2. We prove that ‘l)li)‘l’%) (0, (@)

From Step 1 we have m} = FE(u;-), hence m} > m, and so lim, o 20.@) 2
P

mpﬁo % for p-a.a. x € X. Thus, it remains to prove that

(4.31) lim M (Qp()) < lim mu(Qp()) for p-a.a. z € X.

=0 p(Qp()) ~ pmo 1(@Qp(2))

Fix any t > 0. Denote the class of all open balls Q,(x), with z € X and p > 0,
such that m}(Q,(x)) > m,(Q,(z)) + tu(Q,(x)) by G; and define N, C X by

Ny = {m € X :V6>03p€0,0] Qp(x) € gt}.

Fix any € > 0. Using the definition of V¢, we can assert that for each x € K
there exists {pyn}n CJ0,e] with p,,, — 0 as n — oo such that for every n > 1,
w(0Q,, . (x)) = 0 and Q,, , (x) € G;. Consider the family Fy of closed balls in X
given by

Fo = {@pmm(a:) :x € Ny and n > 1}.

Then inf {r > 0: Q,(z) € Fo} =0 for all z € N;. As X satisfies the Vitali covering
theorem, there exists a disjointed countable subfamily {Q,}:cz, of closed balls of
Fo (with p(9Q;) = 0 and diam(Q;) €]0,[) such that

Ve (g,@) 0 (v g @) wim (v g @) <o
If 11( Uier, @;) = 0 then (4.31) will follows. Indeed, in this case we have u(Ny) =
0, ie., w(X \ Ny) = p(X), and given x € X \ Ny there exists § > 0 such that
w3 (Qp(2)) < mu(Qp(@)) + (Qy(w)) for all p €]0,0]. Hence lim, o 228D <
lim, % + ¢ for all ¢ > 0, and (4.31) follows by letting ¢ — 0.

To establish that u( Uier, @Z) = 0 it is sufficient to prove that for every finite subset
J of Io,

(4.32) ”(ZEJ@%‘) =0.

As X satisfies the Vitali covering theorem and X \ U;e; Q; is open, there exists a
countable family {B;};c; of disjoint open balls of X \ U;ecs Q;, with pu(0B;) = 0
and diam(B;) €]0, [, such that

(4.33) . <(X\igJQi) \igl Bi) s (X\ (zgl Bi) - (ngQl)> =0

Recalling that m? is the restriction to O(X) of a finite positive Radon measure
which is absolutely continuous with respect to u, from (4.33) we see that

m},(X) =Y mi(Bi) + Y mi(Q).
iel i€
Moreover, Q; € G; for all ¢ € J, i.e,, m(Q;) > m,(Q;) + tu(Q;) for all i € J, and
m; > m,, hence

s (%) > Y ma(B) + 3 ma(Qi) + (ig} Qi) |

icl icJ
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As {Bi}iel U {Qi}iEJ S VE(X) we have Zie] Inu(Bz) + ZieJ mu(QZ) > mZ(X),
hence m? (X) > mS/(X) + tu(Uses Qi), and (4.32) follows by letting e — 0. W

4.5. Proof of Theorem 2.20. Taking Theorem 2.18 into account it is sufficient
to prove that for every u € W, P(X;R™) and p-a.e. x € X, we have:

L mu(Q,(@) . ma, (Qp(2)

(4.34) },12% WQ,@) = oS Q@)
(@) | o 10 (@)

(435) i Zie,@) 2 e,

where u, € W, P(X;R™) is given by (A;) (and satisfies (2.12) and (2.13)) and for
each z € W P(X;R™), m, : O(X) — [0,00] is defined by

() = it { [ L(T0)dntr) v Wiz |
=t { [ 2(¥us0) + V0)dute) s w € WigaR |

Remark 4.9. From the proof of Theorem 2.18 we can assert that for every z €
WiP(X;R™), the set function m} : O(X) — [0, oc] given by

m}(A) := supinf {Z m.(Qi) : {Qitier € Ve (A)}

e>0 icl

(where V. (A) denotes the class of all countable family {Q; };¢ s of disjoint open balls
of A with diam(Q;) €]0,¢[ and u(0Q;) = 0 such that u(A\ U;erQ;) = 0) is the
restriction to O(X) of a Radon measure on X which absolutely continuous with
respect to p. Moreover, m} > m, and

mE(Qp(®)) _ 1, m=(Qp(x))
(4.36) P 0(Q,@) i (@)
(4

We only give the proof of (4.34). As the proof of
detailled verification is left to the reader.

.35) uses the same method, its

Proof of (4.34). Fix any ¢ > 0. Fix any ¢ €]0, 1] and any p €]0, ¢[. By definition of
my,, (Qtp(z)), where there is no loss of generality in assuming that 1 (9Q:,(z)) = 0,
there exists w € W 0(Qip(x); R™) such that

430 [ LT+ Vo)) < m, Q) +onQ@)
< le.(Qp(x))ﬂLEu(Qp(w)),

where we have used both the fact that m,, < mj and mj_ is increasing (see
Remark 4.9). From (As) there exists a Uryshon function ¢ € A(X) for the pair

(X \ Qp(x),Qy,(x)) such that

et
4.38 D @l P RN S —
for some o > 0 (which does not depend on p). Define v € W (Q,(z); R™) by

vi=u; + (1 — p)u.
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Using (2.5) and (2.6) we have

Voo { V,u(x) in Qy,(z) o
K Dy @ (ug —u) + ¢Vyu(z) + (1 - 9)Vyu in Qp(x) \ Qyy(x).
As w € Wi:g(Qtp(a:);Rm) we have v + w € W, P(Q,(x);R™). Noticing that

1(0Q¢p(x)) = 0 and, because of (Co), V,w(y) = 0 for praa. y € Q,(x) \ Qp,(z)
and taking (4.37), the second inequality in (4.7) and (4.38) into account we deduce
that

1, (Q,(@)) o
1(Q,(@)) < ][Qp(a:)Ly(vu + Vuw)dp

1 .
— u(Qp(2) /Qtp( )Ly(v#“(fﬂ) + V,w)dp

1
(@@ /Qp(w)\Q,,,,(a;) Ly(Vv)dp
#(Qp(x))

P 1 A
_|_22pc @ 7][ U — Uy Pdu+7p7t
((1 —07 ] gy M Q@)

Ay 1= Q@) \ Qup @)V )P + /Q o Tl

(4.39)

IN

+e€

with

As p is a doubling measure, see (Aj), we can assert that

lim £ (9, — (9,(2)?|duy) = 0.
Qr(x)
But
Ay (pr(a:) 2P
WQ,(0) = 2(1 W@Q <x>>> V()]
+][ 1940 = 19,0ty
and so
Apt 1 (Qtp( )) ulx D
wa) oy <2 (1- IR LG ) mator

Letting p — 0 in (4.39) and using (2.13) and (4.40) we see that
lim ——————= < lim ——= 2(1 - lim
o o) R P ¥cex )
Letting ¢ — 1 and using (2.14) we conclude that
P H(Q(a)) (@)
and (taking (4.36) into account) (4.34) follows by letting ¢ — 0. B

ML) 9, (o)

+¢€
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