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Abstract

We determine the effective electric properties of a composite with high contrast. The energy
density is given locally in terms of a convex function of the gradient of the potential. The permittivity
may take very large values in a fairly general distribution of parallel fibers of tiny cross sections. For
a critical size of the cross sections, we show that a concentration of electric energy may arise in a
small region of space surrounding the fibers. This extra contribution is caused by the discrepancy
between the behaviors of the potential in the matrix and in the fibers and is characterized by the
density of the cross sections of the fibers with respect to the cross section of the body in terms of
some suitable notion of capacity. Our results extend those established in [5] in the periodic case for
the p-Laplacian to a general nonlinear framework and a non-periodic distribution of fibers.
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1 Introduction and setting out of the problem

Composites comprising traces of materials with extreme physical properties have been investigated by
several authors over the past decades in various contexts, such as diffusion equations [5], [9], [11], [I5],
[17], fluid mechanics [10], electromagnetic theory [7], linearized elasticity [4], [6]. The common feature of
this body of work is the emergence of a concentration of energy in a small region of space surrounding
the strong components. This extra contribution is characterized by a local density of the geometric
perturbations in terms of an appropriate capacity depending on the type of equations.

In this paper, we determine the effective electric properties of an electrified composite whereby a set of
extremely thin fibers with very large permittivities is embedded in a matrix with permittivity of order 1.
This study may as well concern various steady-state situations in Physics like heat diffusion for instance.
It is interesting to refer to Electricity where capacity has a specific meaning. A similar problem has been
studied by one of the authors with G. Bouchitté [5] in the periodic quasilinear case, for fibers of circular
cross section. In what follows, we investigate the non periodic case and consider a more general non linear
framework and also fibers with arbitrarily shaped cross sections. This is worthwhile, because fibers stem
from draw plates, and therefore are likely to display anisotropic behaviors governed by general convex
functions. Dropping the assumption of periodicity is a challenging task which may lead to quite different
effective problems when composites with high contrast are considered. In our specific study, the effective
problem turns out to show the same general features as in the periodic case, provided the fibers are not
too closely spaced (see (L.6))).

We turn now to a more detailed introduction of the paper. Let O = O x (0, L) be a bounded smooth
cylindrical open subset of R3. We consider the boundary value problem in Electrostatics

min Fe(u) —/ qyu dx —/ gsu dH?,
u€u0+W1l[’)p((9) (@] I

Wllé)p(@) = {(p S Wl’p((/)) tp=0o0n FQ} , I'gC 80, HQ(F()) >0, I'i= 00 \ T,

1 ) (1.1)

’ ’ — 1
(@0) € (O x I/ (0. 1w € (), (542 =1

F.(u) = / f(Vu) dz + )\5/ g(Vu) dz.

O\Trg TT‘s
The solution u of (P.) describes the electric potential of an electrified fibered composite insulator, where
the distributions of body and surface charges are denoted by ¢, and gs. The non periodic set ;.. occupied
by the fibers is defined in terms of a bounded domain S C R? with a Lipschitz boundary, of two small
positive parameter ¢, r. such that 0 < r. << ¢ << 1, and of a finite set

Q. ={wl, jel}cO, JcCN, (1.2)

by setting

T‘TE = U T;jE’ Tgﬁ = (wg + TES) X (O,L) (1 3)
JjE€Je
The parameter r. describes the size of the sections of the fibers, which are homothetical to S, whereas

the parameter € accounts for the local density of the distribution of the fibers in O through the function
n. defined by

ne(@)i= S0 (095) 1y (@), JEi= [JEN, wl €Y}, &= (a1,22),

zel. (1.4)
Yii=ezteY, Yi=[-1/2,1/2)? L :={:€2? Y:cCO},
where A denotes the cardinal of a set A. Given x € O, the scalar n.(x) is the number of points of Q.
included in the cell Y7 such that & € Y27, if this cell exists at all. Therefore, n.(x) is an approximation
of the number of fibers included in the parallelepiped Y x (0, L) containing x. The assumption

0<n.(z)<N in0O, NeN, n.>n weakstarin L®(0), (1.5)



ensures that the fibers do not concentrate in some lower dimensional subset of O. We also suppose that

min wz — wg > R, dist (9., 90) > 5v/2¢,
.3’ € #T | | ( ) (1.6)

for some sequence of positive reals (R, ) satisfying . The hypothesis guarantees that each fiber is
separated by a sufficient distance from the other fibers and from the lateral boundary of O. The periodic
case corresponds to Q = {ez, z € I.} and n. given by n.(x) = 1 if 2 € |J,¢; Y7 x (0,L), nc(z) =0
otherwise. With no loss of generality, we assume that

0e0, DcCS, (1.7)
where D denotes the open unit ball of R2. For simplicity, we suppose that (see Remark (i1))

ug = 0, if k = +o0. (1.8)

The density of electric energy is given in terms of two strictly convex functions f, g satisfying a growth
condition of order p € (1,+00) of the type

al¢lP < f(€),9(€) < BlEIP VEER?, (a8 >0), (1.9)
and is assumed to take large values in the fibers. More precisely, we suppose that
g2 -
ghi% )\Ew =k € (0,400]. (1.10)

2 Main result

We show that the effective behavior depends on the limit as € — 0 of the density of the capacities of
the cross sections of the fibers with respect to the cross section of O in terms of some suitable notion
of capacity defined by (2.5). This density proves to be of the order of magnitude of the parameter ()
given by

. r2=p ) 1
V¥ i=lim AP (r) € [0, 400], AP (re) = g ifp A2 AP ()=

(2.1)

e2|logre|’

A critical case occurs when 0 < 4(P) < 400. Then, a gap between the mean potential of the constituent
parts of the composite may appear, giving rise to a concentration of electric energy stored in a thin region

of space enveloping the fibers. The effective electric energy then takes the form of the sum of three terms
like

O (u,v) = /O F(Vu) do + Peap(v — u) + Privers(v), (2.2)

where u stands for the weak limit in W1P(O) of the sequence (u.) of the solutions of (1.1)), and v
represents a local approximation of the effective potential in the fibers. More precisely, the function nv,
where n is defined by , is the weak-* limit in My(O) of the sequence of measures (ucp.), where,
denoting by E:EO the Lebesgue measure on O,

82

— 3
He = TE|S|]1TTE (x)LLO (23)

The functional @ ¢;pers accounts for the effective electric energy stored inside the fibers and is given by

(I)fibers(v):/ ghom(agv)ndx,
O



where n is defined by (1.5) and ¢"°™ : R — R is given by

9""(a) :==min {g(q) : ¢ €R®, g3 = a}. (2.4)
The functional ®.,, describes the last mentioned concentration of energy in terms of the gap v — u
between the effective potential in the fibers and in the matrix. It takes the form

Degp(v —u) = / cf(S;v — u)ndx.
O

The function ¢/(S;.) derives from the capacity cap’ defined, for all couple (U, V) of open subsets of R?
such that U C V and for all a € R, by

cap/ (U, V; a) = inf {/ f(01p,020,0) dZ : ¢ € D(V); ¢ = a'in U} . (2.5)
To compute ¢/ (S;.), we fix some sequence of positive reals (R.) satisfying (see (2.1))

re < R. <e, 1<<~P(R.), (2.6)
and study the asymptotic behavior of the sequence (c/(R.)) defined by

1
¢/ (R.) := ?capf(res, R.D; ). (2.7)

This study reveals striking differences depending on the rate of growth p of f (see Section @ Under
assumption we find that the sequence (c/(R.)) has an asymptotic behavior similar to that of
the sequence (vép) (r.)). We also prove that (cf(R.)) is convergent in R if p # 2 or if p = 2 and
72 € {0,+00}. Actually we do not know whether it is convergent if p = 2 and 0 < v < 4o0.
Therefore, in this case, we fix a converging subsequence (cf, (R.,)) and study (P-,). We show that then,
for any sequence (R.) satisfying , the sequence (cf, (RL,)) is also convergent. We obtain

cl(S;a) = lirr(l)cg(RE) € [0, +o0] if p#£2 orif p=2andy® € {0, +oc},
2.8
d(S;a) = kEToo cf (R.,) €]0, +o0] if p=2and 0 < ~y® < +oc. 28)

The extended real ¢/ (S; ) defined by (2.8)) proves to be independent of the choice of the sequence (R.)
satisfying (2.6) (see (2.11) and Proposition (ix)). The application a@ — ¢f(S;a) turns out to be
positively homogeneous of degree p, that is (under the convention c0.0 = 0)

cd(S;a) = ¢! (S;sgn(a))|alP Va € R. (2.9)

The extended reals ¢/ (S, 41) can be expressed in terms of 4®) and of the “p-recession” function of f,
that is the convex function, positively homogeneous of degree p, defined by

foP(€) = limsup f(tf)'

t——+oo t

We assume that there exists o/ > 0, 0 < 3’ < p such that for all £ € R3

F(©) = S < o' (14 [¢)7). (2.10)
Under this hypothesis, we get (see Proposition (viii))

ef(8;41) = yPeap’™ " (8, R?; £1) if p<2,
(8 £1) = 7 (1)@ if p=2, (2.11)
F(8;41) =P = 400 it p>2

In the case p = 2, we obtain no exphclt formula giving the constant cf in terms of cap” like for p # 2.
This means that the real numbers ¢/~ (il) are simply defined by - An explicit computation



S possible 1n some simple cases: Ior immstance c' ? = Cc" ? — = T (see . . peculiar eature o
i ible i impl for inst (1 (=1 6.11)). A liar f f

the case p = 2 is that ¢/ does not depend on S (see Proposition (ix)), whereas ¢/ (S; +1) does if

p<2and 0 <P < 4o0.
The limiting problem associated with (|1.1)) is given by
(P"o™) . min {Fhom(u) - / @pu dx — / qsu dH? 2 u € ug + Wll(;p(O)} ) (2.12)

where (see (2), (211)

Fhom(u) — inf{‘b(uﬂ)) v E LP(O)}z

/ f(Vu) dx + / ¢! (S;v — u)ndx + E/ g"°™ (93v) ndx

o o o

- if (u,v) € (uo + WI}(’)p(O)) X Vi, (2.13)
400 otherwise,

Vp = {UEL”((’)):&ngLP((’)),v:uo on TN (5>< {O,L})}.

D(u,v)

The result stated in the next theorem in the case p = 2, 0 < v(¥) < 400 concerns the subsequence (ue,)-
For notational simplicity, this subsequence is still denoted by (u.).

Theorem 2.1. Assume . ([1-5). (21). , then the unique solution u. of converges

weakly in WHP(O) as € tends to 0 toward the unique solution u to . Moreover, there holds

lim {Fs(ua) —/ QyUe dx—/ QsUe de} = Fhom(u) —/ qQu dm—/ gsu dH?. (2.14)
£—0 o ry o r

In addition, if ’y(ﬂ > 0, then the sequence of measures (ucpe), where ue is defined by , weak *
converges in My(O) to nvﬁfo, where n is defined by and v is the unique element of V, given by

, such that F"™(u) = ®(u,v).
Remark 2.1. (i) If v?) =0, the variables u, v are independent and the effective energy simply reads

Fh"m(u) = / f(Vu) de+C, C:= inf / ghom(aw)dx (7(11) =0).
o o

veVy

If P) = 400 (in particular when p > 2), the functional ®(u,v) takes infinite values unless u = v, hence

Fhom(u) :/ f(Vu) dx + ]2-/ ghOM(a3u) ndz (7(1’) — _;'_00)7
o o

and the effective energy is that of the matriz augmented by a permittivity term in the direction of the
fibers.

If 0 < 4P) < 400, the effective electric energy is not a local functional. This means that it can not
be written as the integration over O of a density of electric energy of the form h(z,u(zx), Vu(x),...).
By introducing the additional state variable v, we can write the effective energy under the form of a
local functional of the couple (u,v). This internal or hidden state variable is the limit of a suitable
scaled of the electric potential in the sole fibers and accounts for the micro-structure. The total effective
electric energy is that of a body totally filled up by the matrix material augmented by a term which is the
infimal convolution of the last mentioned permittivity term supplied by the periodic distribution of fibers
and a bonding term depending on the gap of electric potentials in the matriz and in the fibers. These
concentrations of electric energy in the matriz in the immediate vicinity of the fibers, which may occur
only when p < 2, induce a total effective energy lower than ®(u,u). The structure of ® stems from the
contribution of each term entering the decomposition:

f(Vu) dx + /

(Dre X (0,L)\Tr,

F.(u) = f(Vu) dm—i—)\s/ g(Vu) dz, (2.15)

/0\(DRE x(0,L)) Tr,



where, given (R.) satisfying (2.6]), the set Dp_x (0,L) is the R.-neighborhood of the fibers defined by
{#-3). The set (Dg. x (0,L))\T,. is a small portion of the matriz surrounding the fibers where electric
energy may concentrate due to the gap between the mean electric potentials in the fibers and in the matriz.
This will provide a limit capacitary term associated with f°°P(Vu,0) on R.D\ r.S. The contribution of
O\ (Dg. x (0,L)) is obvious and the contribution of the fibers is classical (see [1, [18]).

(ii) The simplifying assumption (@ ensures that the effective electric energy stored in the fibers
vanishes if k = +00. An alternative is to assume that ug takes the same values on the intersection of the
opposite bases of O with ['y.

3 Conjecture for the case of a random distribution of fibers

In this section, we indicate a possible generalization of the periodic model to the case of parallel fibers
randomly distributed in accordance with a stationary point process. In the model under consideration,
the cross sections are not uniformly (i.e., periodically) distributed but their distribution is periodic in
law i.e., the probability of presence of the sections is invariant under a suitable group (7).cz2 defined
below. In the stochastic homogenization framework, the distribution of the sections is then said to be
statistically homogeneous. We are going to give some precisions on this model.

Let us first define the discrete dynamical system (€, P, (7.).cz2) that models the distribution of the
sections of the fibers. Given d > 0, we set

Q:: {(wi)ieN:wiERg, |Wk_wl|2dfork7él}ﬂ (31)

and denote by ¥ the trace of the Borel o-algebra of (R?)> on Q. We equip 2 with the group (7.).ez2
defined by

T,W=wWw— 2,

where w — z must be understood as (w; — z);en, and we denote by F the o-algebra made up of all the
events of ¥ which are invariant under the group (7.).czz. We assume the existence of a probability
measure P on (€, ) for which (7,).czz is a measure preserving transformation, i.e.,

P#7, =P for all z € 72,

where P#7, denotes the pushforward of the probability measure P by the application 7,. For any
measurable function X : Q — R, we denote by E¥ X its conditional expectation given F, i.e., the unique
F-measurable function satisfying

/EfX sz/XdeoreveryEG]—'.
E E

Note that E¥ X is 7.-invariant (hence periodic) and that under the additional ergodic hypothesis which
asserts that F is trivial, that is made up of events with probability measure 0 or 1, E¥ X is constant and
nothing but the expectation E(X) := fQ X dP. Note also that the following asymptotic independance
hypothesis

| |lim P(Ent,E')=P(E)P(E), (3.2)
z|—+o0
is a stronger but more intuitive condition yielding ergodicity.
The random set of fibers is defined by
To.(w) = |J TL, T :=(ewj+7.9)x (0,L), J(w):={j€eN, w;e0}. (3.3)
j€Je(w)

We will denote by (P-(w)) the problem associated with the random functional F¢(w,.).
Consider the random function

ng: =N, wr nglw) ::#{iEN: wie?}, Y = [0, 1[2. (3.4)



In all likelyhood, the conditional expectation E¥ ng(w) is the only additional corrector of the limit energy
obtained in the periodic case. More precisely let us denote by ®(w,.) the random functional:

/ f(Vu) dx +E}-no(w)l;:/ g™ (93v) dx + Efno(w)/ ¢! (S;v — u)dz;
(@] o ]
P 0) =377 it (u,0) € (uo + WEP(0)) x V,, (3.5)

400 otherwise,

and set F"™(w, u) = inf {®(w, u,v) : v € LP(O}. Then one may reasonably conjecture that

Conjecture 3.1. Under assumptions stated above, when € tends to 0, the unique random solution u.(w)

to the problem (P:(w)), deduced from by substituting for , almost surely weakly converges
in WHP(O) toward the unique solution u(w) to

(P(w)) min {Fhom(w,u) - / Qu dx — / qsu dH? :u € ug + Wlit’)p(O)} .
O Iy

Moreover,
lim {Fa(w,ug) —/ qQyUe dx—/ qsle d’HQ} = FMom(w, u) —/ quu dx —/ qsu dH?,
€0 o r, o r,
2
and, if vP) > 0, v.(w) = ﬁﬂﬂsw)ug(w) almost surely weak * converges in My(O) to some v(w)

belonging to V,, such that F"™(w,u) = ®(w,u(w),v(w)). Furthermore, under the ergodic hypothesis (for
instance under condition ), there holds E¥ng(w) = Eng so that the functionals ®, F"™ and the
functions u and v are deterministic.

We hope to treat the mathematical analysis in a forthcoming paper.

4 Technical preliminaries and a priori estimates

The proof of Theorem rests on an extensive investigation into the asymptotical behavior of the

sequence (u.) of the solutions to (1.1]) and, more generally, of sequences (u.) satisfying
sup F(u.) < +o0. (4.1)
e>0

A commonly used method consists of introducing auxiliary sequences designed to characterize the com-
portment of the diverse constituents of the composite. The delicate step lies in the analysis of the fibers’
behavior. An interesting approach consists in investigating the sequence (ucp.), where u. denotes the
measure supported on the fibers defined by . To that aim, given a sequence (R, ) satisfying , we
introduce the operators ()., ()., ({.))e defined on LP((0,L); W1P(O)) by setting

hr @)= 30 (f elEo) @)1, @)

. ; Re
JEJe Re

=Y (f

J
jed. JODx,

(ol i= 3 (f z so(s,:cg)dé) Ly (@),

z€l, €

(8, 3) dHl(/S\))]le (@), (4.2)

where

D}, =w!+R.D, Dg =] Dj. (4.3)
VISOE
The series of estimates stated below will take a crucial part in the proof of Theorem (the proof of
Lemma [4.1]is situated at the end of Section [4)).



Lemma 4.1. There exists a constant C' such that for all ¢ € LP((0, L); WLP((/?\)),

/| Py, < (m( Jo |V<P| dr, ifp <2,
R. — - He = .
' ) (”>(R Jo VelPdz, ifp>2,

/I —{(@)r " dpe < (p) /|W\de
[wehe = teinPaue < g [ [Fpas (4.4

[ et < cer / Volrde Vzel,
YZx(0,L) Y2 x(0,L)

/ o — (@) [Pdpie < Cr? / Soldpe.

where 7(p)(.) is defined by ,

The next Lemma states a lower bound inequality for convex functionals on measures.

Lemma 4.2. Let O be an open subset of RY and let p. and p be bounded Radon measures in O such
that pe weak * converges in My(O) toward p and f. a sequence of p--measurable functions such that
sup, [ |fe|? dpe < +oo. Then

i) the sequence of measures (f-pu.) is weak  relatively compact in My(O) and every cluster point v is
of the form v = fu with f € LP(O).
i) If fope = fu, then lim iélf/j(fg) dpe > /j(f) dp for all convex lower semi-continuous function

7 on R satisfying a growth condition of order p. In addition

1im151f/|f;\f’ dpe > /If*I” dp,
E—

imigt [ 14 de > [ 1579 o

Proof. The proof of this lemma is given in [5] with j = f\ |” but the duality argument can be extended
to any convex lower semi-continuous function satlsfying a growth condition of order p. Assertion

results from the fact that if fp. X ogpand fopue = fu, then g > f+ p—a.e., which can be easily checked
by using positive continuous test functions (notice that in general, g # f). O

(4.5)

The main results of Section [d] are stated in the next Proposition, where the asymptotic behavior of several
sequences associated to some sequence () satisfying is specified.

Proposition 4.1. Assume (u), (-) (-) . Let (u.) be a sequence in WHP(O) satisfying
and let (pe), ((ueYr.) and ({{ues))e) be defined by . Then the next estimates hold true

/ [ue|? + |Vu[Pdz < C,
o (4.6)
[ 10suc 4 el -+ )+ ). P < .

and there exists u € (ug + WSOP(O)) and v € V,, such that, up to a subsequence, the next convergences
take place

Us = U weakly in ~ WP(O)

Uefle 2 nv[,zfo, Dgc fre 2 nﬁgvﬁfo weak x in My(O), (4.7)
(ue)p.pre = nuﬁfo, (U pre = nvﬁfo weak * in  My(O).
In addition, v = u if ) = 400 (in particular when p > 2).



Proof. The first line of (4.6)) follows from (4.1), the Dirichlet condition on 'y and Poincaré inequality.
We deduce that, up to a subsequence,

Ue = U weakly in W'?(0), (4.8)

for some u € WHP(O). We infer from the weak continuity of the trace application in W1?(QO) that

u € (uo + Wllt’)p((’))). It follows from the fourth line of 1’ that the sequence (((u.))e) defined by 1|
strongly converges to u in LP(Q). We deduce then from (L.5)) that

({(ue))ene — un weakly in LP(O). (4.9)
We easily deduce from (2.3)), (1.5), (4.2), and (4.9) that
[ uedlrdue < 9lnlimioy [ IKueh)erdo < (4.10)
o
On the other hand, by (1.5) and ({2.3)) we have
fhe = nﬁfo weak x in M, (O). (4.11)

By applying Lemma taking (4.10) and (4.11) into account, we deduce that there exists f € LP(O)
such that, up to a subsequence,

((ue))epe = fnLlly — weak x in  My(O). (4.12)

Testing the convergences (4.9) and (4.12)) with a given ¢ € D(O), taking the estimate |{({¢)). — ¢| < Ce
in O into account (this estimate is satisfied provided ¢ is sufficiently small, see (1.4)), (4.2)), we get

lim0 ({p))e({ue))enedx = / pundz; lim0 {p))e({ue))edue = / pfndx.
e=0Jo 1) e 1)
We prove below that

lim
e—0

=0. (4.13)

L/MMA%M%M—/K@M@M&%
(@)

We deduce that fo pundx = fo pfndx and then, by the arbitrary choice of ¢, that fn = un a.e. in O.
Therefore,

N epte = null, weak xin  My(0). (4.14)
Lo

By ([1.10) and (4.1), we have
[ 10sulr an. < c. (4.15)

From (1), (E4), (E5), and (E10), we derive
[+ 1w P + P < .

which, joined with (4.15)), yields (4.6). We deduce from ([2.6)), the third line of (4.4)), and (4.14)), that

UV g pe = null, weak * in  My(O). 4.16
= LO
By (4.6) and Lemma
(Ue )y, e > nvﬁfo, Ug fle = nvlﬁfo, Dy fle 2 nwﬁfo weak x in  M;(0), (4.17)

for some (v, v1,w) € (LP(O))3. Tt follows from the estimate stated in the fifth line of (4.4) that

nv =nv; a.e. in O. (4.18)



To show that

nw = ndsv a.e. in O and nv = nug on 'y N O x {0,L}), (4.19)

it suffices (as in [5]) to pass to the limit in [ @d3u. dp. by integrating by parts with first ¢ € D(O), next
¢ of the form p(x ) 0(z)(x3) with 8 € D(Op), Oy = {Z €w: (Z,0) € Tp}, ¥(0) =1, (L) = 0 and
finally 6 € D OL Op={rew: (z,L) Ty}, v(0) =1, ¢(L) =

Collecting (4.8 4 16)), (4.17)), (4.18), (4.19), the convergences are proved. It remains to notice that
the first line of 1elds v =u when p > 2 or ) = +o0: mtroducmg an additional state variable to
account for the asymptotlc behavior of the electric potential in the fibers is not necessary!

Proof of (4.13)). By (1.3), (1.4), (2.3), and (4.2) there holds

T NUuey, YZ x (0,1) =0, (4.20)

/ (o)e (ue)) ened = / (o)) () Vel
(@)

hence in this case there is nothing to prove. However, the equality (4.13]) may fail to hold in the general
case, because the border of some cells Y can possibly intersect some of the sections of the fibers. To
circumvent this difficulty, we introduce the operator ((.))1 . defined by (see (1.4))

(OIS (f z w(s,m3>dé> L2 (d),

zel,
(4.21)
cG=(vulJs )\ U
JjeJz JEJNJZ
We deduce from (2.3)), (4.2]) and (4.21)) that
2
1,e ue 1 adﬂa = / / 17576[37
[ tome Py wDrerarg
2
€
= Z Z a >>1757d1‘
A L &
xl ( ) (o) 5
= (s,z3)d ue (s, x3)ds —rgrdr
zel. jeJz SJ YZ r6|S| (422)
ZZ//( sx3d5>ussx3
z€I. jeJz 3 Yz
—Z// (7[ (s,x3)d )(f s:cgds)nsdx
z€Il. 3 Yz
= [ (@-(ue))enede.
o
By (4.22)), the proof of (4.13]) is achieved provided we establish that
i | [ (D)) = ((0))-(fuc))edie| = 0. (4.23)
E— @)
To that aim, we notice that since ¢ € D(O), by (4.2)) and (4.21)) the following estimate holds true:
[((e1.e = ((@))e] < Ce. (4.24)
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We deduce that

/O (N 1,eue)) e — ({p))e(ue))edpe
/l Nell{(u >>1,e*<<us>>s|dus+/ [(ue))ell (o)) 1,e — ((P))eldpe  (4.25)
<C’/ [((ue))1,e — ((ue))e |du5+C’€/ [{({(ue))e|dpse.

We prove below that

/O [({te))1e — ((ue))eldpte < C, (4.26)

[ Htwaddne < c. (1.27)
O

Assertion (|4.23 l 23) results from (4.25)), (4.26), and (4.27). Assertion (4.13)) is proved. O
Proof of (4.26). By (1.4 ., 2.3]), there holds

/ e — {(ue) \due—ZZzT2|S| | [, e = (e (4.25)

z€Il

By (4.21)), the function ((u.))1 . takes constant values on each set S{_x {3}, whereas the function ((u.)).,
defined by (4.2), may take up to four different values on S x {x3} if SJ NOY? # 0 and j € JZ.

For each z € I., we denote by Z7 the union of the cells Yzl whose adherence has a non empty intersection

with YZ. The set Z7 is the subset of e(z + [-1,2[?) deﬁned by
= U vt A=@n[-1,1P)n{keZz+kel}. (4.29)
keA,

Let us fix z € I.. Noticing that #A4, <9, we infer that for each j € J? and for a.e. x5 € (0, L), we have

52

w S9. |<<u€>>1’5 - <<u€>>a‘di‘

= us (s, x3)ds | — ][ us (s, x3)ds || dz
32 35 e (i) = (o tm)
< —_
k; (7[ ue (s, x3)ds ) (7{/:% ug(s,xg)ds>
<C / ][ ug (s, x3)ds | — ][ us (S, T ds) dz 4.30
5 L |, )= (£ vt o
<C Z / ue (T, x3) — (7[ UE(S,.’Eg)d8> + |ue (&, x3) — (7[ UE(S,l'g)dS> dz
keA, v’ 4 i ytF
<’ / ue (T, z3) — ][ ue(s,x3)ds || dz
S [ e (£, ot
<y C’ka/ /V\ug(i:,xg)‘di‘ < 05/ %s(f,zg)‘dﬁ
k€A g Z
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The next to last inequality in (4.30) being deduced from a change of variables in Poincaré-Wirtinger
inequality ji L2p2 ‘cp fk+0 1 pds|dz < C’kf] L 2[2 |Voldr in WH1(] — 1,2[%). Noticing that by (|1.4)
and (L.5) there holds #.JZ < N we deduce from (4.28)), and ([£.30) that

/| Ue))1,e — ((ue)) |duaSCszﬁJz// 37963 d
sele (4.31)
< Ce Z/ / Vu6 Z,x3)
zel. ‘
By , each set Y7 is included in at most 9 distinct sets Z§/7 therefore by we have
EZ// V’LLE.’L'(E;), dcc<9€Z// 339&3 dm
) (4.32)
< 96/ ‘/V\us dr < Ce </ ‘6% pdz)p < (Ce.
o o

The estimate (4.26)) follows from 4.31) and (4.32). O
Proof of (4.2 (-) By (2.3 . 4.2), and (4.29)), there holds

/O\<<us>>s|dﬂszzz 2|5|/ /S (1))

2€l. jEJZ T

82
Zzzwdéwk

z€l. jEJZ k€A,
(s,x3)ds
Yz+k

<oy y [0
z€I. k€A,

because fA, and §JZ are uniformely bounded. Assertion (4.27) is proved. O

Proof of Lemma 4.1l By (2.3) and (4.2]), we have

o el = 3 / / (@) [P da
L 2w s, |

d (4.33)

f . ue (s, x3)ds
Yf‘;

dxs < C/ |ue|dx < C,

. |P
=> ¢ / (o).| dus (4.34)
VISOE
P
= Z 2 / / >7“g| dl’,
]EJ R |D| DJ

where (@) (x3), ((p)%e (x3) denote the constant value taken by the functions (¢),. and {p)g. on D{QE X

T,

{z3}. The next inequality is proven in [5, Lemma A4] if p < 2 and is derived from the formula stated in
5, p. 433, 1. -2] if p > 2:

p P
V(R,o) € Ry x (0,1], / cpf][ pds :CSCR—/ |V|Pde,
Dr dDar he) Jpg
" (4.35)
=a?Pif 2 =——ifp=2.
hia) =« ifp#2, h(a) 1+|loga\1 D
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By (4.35) there holds, for a.e. x3 € (0,L) and all j € J,

| o —nrazc [ je—tonlarc [ o=
Re

ke Dy,
Ot [ Vel da, ifp<2, (4:36)
h(Ria) Re
CR? ng%E |Vel? dz, if p> 2.
The first line of (4.4) follows from (2.1, (4.34)), and (4.36]). Similarly, setting
JZ={je ., wl ey}, (4.37)
and denoting by ({¢))Z(z3) the constant value taken by ({¢)). in Y7 x {x3}, we get (see (4.2))
J1ene— 0P ne =3 5 [ 4oz - (o
zel, EJJ
L p
=y > / ][ (0 — (©).)(&,x5)di| edws (4.38)
z€l jegi 0 E
< C’Z Z/ / (cp){;a{pdx.
zel, jeJ?
Noticing that by (1.6), (1.4) and (4.37)) we have
YZCDW V2e)cQ:cO Vzel.VjeJ?, — QF:=c(z+5Y), (4.39)
we infer from (4.2), (4.35) that for a.e. x5 € (0,L), all z € I. and all j € JZ, there holds
/ o (o] (s.o0)ds < [ (LI (5,
Yzs D(waﬂfs)
<Ot [ Vel sands 440
h (?) D(wl V/20) (140
<o / IVol? (s, 23)ds
= T s L3 .
h(%) Ja:
By (1.5) we have
fJZ <N Vzel. (4.41)

By (4.39) and (4.41)), there holds
Z / / [VolP dz < 25/ |Vl? d,

{zel., Jz#0}

we deduce from (4.38)) and ( - ) that

- Td€<C Vel d 7/V”d7
/\ s < O30 Z//zwwx s Jo/ el

hence the second line of (4.4]) is proved. The third one is obtained in the same way and the fourth one
is straightforward. The ﬁfth one is easily derived by choosing (R, «) = (r¢,1) in (4.35). O
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5 Proof of the main result

The demonstration of Theorem is based on the I'-convergence method (for precise details about this
method, we refer the reader to [2], [3], [12]). The "lowerbound” and the "upperbound” stated respectively
in Proposition and Proposition indicate in particular that the sequence of functionals (F;) I'-
converges with respect to the strong topology of LP(O) to the functional F"*™ defined by . The
proof of Theorem [2.1] is deduced in the following manner from the two last mentioned propositions and
from Proposition [4.1}

5.1 Proof of Theorem [2.1l
We will only prove Theorem (2.1]) in the most interesting case

7P > 0. (5.1)
Let (u.) be the sequence of the solutions to (1.1). By (1.8)), and since ug is continous on O (see (1.1))),
there holds F. (u.) — [, qpuedr— [i. gsu=dH?* < F-(uo)— [, qpuodr— [1. gsupdH? < C. As | [, qpucdz+
fF1 qsuEdH2’p < CF.(ue), we deduce that (u.) satisfies 1) Therefore, we can apply Proposition
and, after possibly extracting a subsequence, assume that (u.) converges weakly in W?(0) to some u,

and that the sequence (ucpu.) weak * converges in My(O) to U‘C?[O for some v € V,,. We just have to
prove that (u,v) is the solution to (2.12)). To that aim, we first apply Proposition to get

lim iélf F.(ue) — /

unde—/ gstedH> Zé(u,v)—/ unda:—/ qsudH>. (5.2)
(@) Fl (@] Fl

By Proposition there exists a sequence (¢.) such that,

e —u strongly in LP(O), @epe = vnﬁ?[o weak * in M,(0), limsup F.(¢.) < ®(u,v). (5.3)

e—0
Since uc is the solution to (1.1]), there holds
F.(ue) —/ qBucdx —/ qsucdH? < F.(p.) —/ qBpdx —/ qspedH>. (5.4)
(@) Fl (@] l—‘1

We infer fom (5.2), (5.3)), (5.4) and from the weak continuity on WP(O) of the linear form ¢ —
Joaspdr — [1. qspdH? that

D (u,v) —/ unda:—/ gsudH? < min(Phom),
o r,

hence (u,v) is the unique solution to (P"*™) (the uniqueness results from the strict convexity of f and
9)- O

5.2 Lower bound

The result stated in the next proposition in the case p = 2, 0 < v® < 400 concern only the subse-
quences (ue, ), (F,), ... corresponding to the assumption (2.8)). However, for notational simplicity, such
subsequences will still denoted by (u.), (FZ), ....

Proposition 5.1. Under the assumptions of Theorem for all (u,v) € (ug + WI}Z)P(O)) x V,, and for
all sequence (ug) in ug + Wll(’)p(O) which weakly converges in WP (O) toward uw and such that (ucji)
weak * converges in My(O) to vnﬁfo, we have

liminf F;(us) > ®(u,v). (5.5)
e—0
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Proof. We can suppose that liminf. g F:(u.) < 400, otherwise there is nothing to prove. Accordingly,
after possibly extracting a subsequence, we can assume that is verified and that the estimates
and the convergences (4.7) established in Proposition take place. We choose a suitable sequence
(R.) of positive reals satisfying (the choice of (R.) will be made more precise in Lemma [7.2)), and
establish (see below) that

liminf/ f(Vue) dx Z/ f(Vu) dx, (5.6)
=0 Jo\(Dgr. x(0,L) o
limiglf)\E g(Vue) dx > 15/ g™ (93v) ndz, (5.7)
e~ T,. o
lim inf f(Vu,) dx > / ¢/ (S;v —u) ndx  otherwise, (5.8)
=70 (DR x(0.L)\Tv. o

where gom and ¢/ are defined by (2.4) and . Collectmg , , we obtain (5.5)) which,
joined with , achleves the proof of Proposition O
-'

Proof of (5 l D 6] and 1 j We have |Dp, X (0 L)| — 0, therefore the sequence (]l@\(DR (0, L))Vug)
weakly converges in LP(O;R3) toward Vu. Assertion then follows from the lower semi-continuity
of g— [ o f(q O

Proof of 1' . If k < 400, by (1.10), (2.4), (4.7) and Lemma we have:
r2|S
‘2 | /ghom(agus) d,ug

> E/ g"°™ (95v) ndz.
o

hmmf/\/ g(Vue) de > hmlnf/\
T *}

e—0
Te

Otherwise, if k = 400, it is enough to notice that A, fT (Vue) dx is bounded from below by 0. O

Proof of (5.8). If v®) = 4+ (in particular if p > 2) there is nothing to prove because then, by
Proposition v = u. From now on, we assume that 0 < v(?) < +o0 (hence p < 2). First, we show (see
Lemma [7.1)) that there exists an approximation (u.) of u. piecewise constant in x3 satisfying

)\5/ Sl de < /\5/ VP de, / V.| de g/ VP dz, Vi, = (9., dsii., 0)
T, O O

T,.

[ 14 ) P < €

(5.9)
(Ue ), fhe RN m;ﬁi[’o, (Ue) R, e A nuﬁ?fo weak * in  My(O),
lim inf / f(Vug) dz > liminf / FoP(Viie, 0) da.
=70 J(Dr.x(0.L)\T. 70 J(Drx(0.L\T,
Next, we fix a positive real § satisfying
1<d<2, (5.10)
and define the set S’T_:g by setting (U, a) = (S,.,79) in
U *:={zeU, dist(z,0U)>a}, (5.11)
Ute:={zeR? dist(z,0U) <a}UU. '
Notice that by we have, for small £ small enough (see (4.3)),
s
Di_c ST Vjel. (5.12)
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We prove (see Lemma that for a suitable choice of the sequence (R.) satisfying (2.6]) (the choice of
this sequence is determined by Lemma[7.2), there exists an approximation u. of u. verifying

/ Fo? (Vi 0) da > / FoP (Vi 0) da + o(1),
(Dr. X (0,L)\T. (D % (0,L)\(S.* X (0,L) (5.13)

Q= @)y, = (@), on  OSC x (0,L1), .= (@)m. = (i.)r. on 9Dg. x (0,L),

The properties _of u. allow us to make good use of the capacitary problem (2.5). More precisely, let us
denote by (u.)J_(x3) (resp. (uaﬂ% (z3)) the constant value taken by the functlon (Ue)r, (vesp. (Uc)m.)

on the set sz x {3} (see (4 ) By (5.13)), for each (j,z3) € J. x (0, L), the function u. is equal to

U J x3) on the set oD%, x x3} and to u‘S ‘ (3 8S¥; re x {x3} (see (5.11))). Therefore there holds,
R. R.
for all j € J. and for a.e. x5 € (0,L) (see (2 )

/D s it 0 (Vi 0)(2) d > cap’™" (S5, Dl 3 ()3, (2s) — (Gl (33).

We deduce that

/ e IPP(VE0) de / S [ T i) dey
(Dr. x(0,L)\Sr. ¢ x(0,L) jer Iph s (5.14)
/ (32 can’™"(827%, Ds (@), — (@), ) s,
jeJ:

Because f°? is p positively homogeneous, we can apply (6.10) and, for each (j,z3) € J. x (0, L), obtain

(sec (25). (1))

0, P j—r® j ~ \j ~ \ ] r -1 s i
apf (Sﬁ; E’Dﬁs; <u5>fn5 - <U8>3%E) = g pcap (S s (Re/re)D:; <u5>$5 - <u6>§25)

r27P g2 S PV (5.15)
=g Jy, o’ (57 (RefrODi @, - (@)
Let us fix a bounded Lipschitz domain S’ such that

S cs. (5.16)

For small ¢’s, there holds S S_Tgfl, therefore by l} 1) li and , we have

2 —p coup
/ (YL, 0) da > / cap? ™7 (S', (Re/r)D; (@)r, — (@) ) e (5.17)
(Do x(0.L)\S7. ¥ X (0.L) e?

We then distinguish two cases.

Case p < 2. Collecting (2.1)), (5.9), (5.13)), (5.17), and (6.5)), we deduce that
lim inf /
e70 J(Dr.x(0,L)\Tr,

By applying Lemma 2| (ii) to the convex function j(.) = capfx'p (S R2;.) which, for p < 2, has a growth
of order p (see Proposmlonm (i) and ( - - taking (4.7) and (4.11)) into account, we infer

F(Vue) de > 5P lim inf / cap’ ™" (S', R (@e)r, — (Ge)r.) dpse.
E— (@)

lim inf

/ f(Vue) dx > ’y(p)/ cap’” " (S/,Rz; v —u) ndr, (5.18)
70 J(Dr. < (0.L)\T, o
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for all Lipschitz domain S’ satisfying (5.16). Fixing an increasing sequence (S, )nen of Lipschitz domains
such that S,, C S and Unen Sn = S, substituting S,, for " in and passing to the limit as n — +oo,
thanks to , and to the Monotone Convergence Theorem, we get .

Case p = 2. In this case, we fix two positive reals r, R such that

rD C S C RD, (5.19)

and specify the choice of S’ by setting
S :=rD. (5.20)

By 619, €19, €3). ). and @I, we have

caupfoo'2 (reS', ReD; 1) = czaup]m"2 (rerD,R.D; £1) = capfm'2 <r5RD,R5§D; :I:l)
r

(5.21)
> cap’ ™" (r.S,R.D; £1) .
We deduce from ([2.7)), (2.8), , and ((6.13]) that
I (7.8, R.D; +1 -
lim inf <P (TESQ’RE i £1) > ~@ef ’ (£1). (5.22)
e—0 3
By (5.17) and (6.10]), there holds
=% (r.8', R.D; 1
0, cap r ’ ) =
/ / p(vu670) dx = ( - 2 - ))/ |((e)r. — ()R )ﬂ dpie

(Dr. x (0.L0\S7 8 x(0.L) ¢ (5.23)

N capfoo’ (7‘55 R.D; —

D [ 1. — @) P
Joining Lemma [£.2] (see (£.5)), (5.13), (5.17), (5.22), (5.23), and (6.5)), we get (5.8). O

5.3 Upper bound

As above, the result stated below in the case p = 2, 0 < 4(2) < 400 are obtained for subsequences (ae,)
corresponding to the assumption (2.8)) which are still denoted by (ac).

Proposition 5.2. Under the assumptions of Theorem for all (u,v) € W%(’)p((’)) x Vy, there ezists a
sequence (ug) such that

ue — u strongly in LP(O), uepre = vnﬁfo weak * in My(O),
limsup F.(ue) < ®(u,v).

e—0

(5.24)

Proof. By density and diagonalization arguments, (see [Bl, pp. 424-429] for more details), we are reduced
to prove that for all (u,v) € (C'(0))? such that

O (u,v) < 400, (5.25)

there exists a sequence (uc) in WP(0) (thanks to the truncature argument employed in [5, p. 428], we
can forget the boundary constraint on I'g) such that

ue — u strongly in LP(OQ),  uqpe = vnﬁfo weak * in My (0O),

lim sup/ f(Vug)dx + )\5/ g(Vue)dr < ®(u,v).
e—=0 JO\T,, T,

Te

(5.26)
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Accordingly, let us fix (u,v) € (C*(0))? satistying (5.25). By (1.9), (2.4) and the strict convexity of g,
there exists a unique field ¢ € C(O;R?) such that

g(o1(x), pa(x), B3v(x)) = ¢"™(d3v(z)) Yz € O. (5.27)
If p # 2, we fix any sequence (R.) satisfying (2.6)). If p = 2, we set

R.:=R.. (5.28)
We denote by 6. : O — R the unique solution to the problem
min {/Afmvp(%(j;),()) dz, €W (0), §=1inS,, =0 in0O\ DRE} .
o

Since f°°P is p-positively homogeneous, by (2.5) and (6.10]) there holds, for all j € J. and o € R,

_ foo’p(a/V\GE, 0) dz = cap’ " (Sﬂs,Dég;a> =cap’” " (r.8,R.D; )
D, (5.29)

= r?fpcapfm'p (S, Re/r-D;sgn(a)) |afP.
We set

ue () = 0= (Z)xe () + (1 = 0=(2))Ju(z), (5.30)

OEDY <]i v(@, 25) dF + (][5

JEJ: Te

where

o(T, x3) de) (2 — wﬁ)) 1, (2). (5.31)

Re

It is easy to check that the convergences stated in ([5.26)) hold true. We have

/ f(Vue)dx + )\E/ g(Vue)dr := I.q + Io + Ie3;
O\T,

T,

I =/ f(Vu)dz
O\(Dr, x(0,L))

(5.32)
Ia= [ £ (((xe = 0)V6.,0) + (1 = 6.)Vu + 0.V ) da,
(Dre x(0,L))\Sre x(0,L)
I3 = /\g/ g(VXE) dx.
T,
The proof of (5.26) is achieved provided we show that
limsup I, < / F(Vu)da, (5.33)
e—0 @)
limsup I.5 < / ¢! (S;v — u)nde, (5.34)
e—0 @)
lim I3 < E/ g"o™ (9sv)ndz. (5.35)
e—0 o

The proof of (5.33) is straightforward.

Proofs of Assuming first that v() < 400 (hence p < 2 and (6.) is bounded in W?(0)) and
applymg (7.16) to (h,A) = (f, DR x (0,L)\ Sy, x (0,L)), noticing that by (1.5) there holds |Dg_| <
CZ; =o(1) and |0.| <1 ( see ), we get

I (e = w)V0.,0)) de| = o(1), (5.30)

Is2 _/
(Dre x(0,L)\Sr, x(0,L)
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and then deduce from ([7.8) that

P (((xe — u)V0e,0))d| = o(1). (5.37)

I€2 _/
(Dr. x(0,L))\Sr, x(0,L)
It follows from (7.16)), (5.37)) and the estimate (see (5.31]))
|(xe —u)(z) — (v —u)(w!,23)] < CR. in Dg{a x (0,L), Vje€ J.,
that

I — Z /D 1P ((v — u)(wg7$3)/v\9670) dx| = o(1). (5.38)

je7. J(Dh_x(0,L)\S,. x(0,L)

By (2.3)), (5.29)) and (6.10)), there holds

Z/ P (v —u)(wl, x3) V@E,O Ydx = Z/ cap’” Sr ,R-D; (v —u)(w!, x3))das

& o oSt x0.L) e (5.39)
2P
=T [ ! (S, RefreDi (o) de
where
Ce(z) =) (v —u)(wl, as)lpy (3). (5.40)
jEJe

We distinguish then two cases. B
Case p < 2. Let us fix some bounded open subset V' of R? such that S C V. For small €’s there holds

V C R./r.D, hence by cap/™ " (S, R /r-D; (- (2)) < cap!™ " (S, V;(-(2)), therefore by ,
and we have, since 0 < y(?) < 400,

limsup I, < ~®) limsup/cap (S Vil(x))dpe. (5.41)

e—0 e—0

By Proposition (i), the application cap’ = (S, V; ) is locally Lipschitz continuous and by || the
estimate | — (v — u)| < Ce holds true in Dg_ x (0, L), because v — u is contlnous We deduce that
cap!™" (S’, V; Cg(x)) — cap/™” (S Viv— u) < Ce in Dp_ and then infer from and ( that

limsup I, < ~® / cap’ " (S, Vv —u)nda. (5.42)
o

e—0

R? such that S C V; and UneN V, =R? notlclng that by and l D there holds capf (S, Vs v —
) < cap/™ (S Visv— u) and lim,_ 4 o cap’ (S Vv — u =cap/ S R2; v — u , by applying the
Dominated Convergence Theorem, we get

Substituting V,, for V in , where (V ) denotes an 1ncreasmg se i ence of bounded open subsets of

limsup I., <~v® lim cap’” " (S, Vs v — u)nde = ~(P) / cap’” " (S,R* v — u)ndz
e—0 n—+0oo (@] (@] (543)

:/cf(S;v—u) ndx. (p<2)
o

The proof of (5.34) is achieved in the case 0 < 4(P) < +oo0.
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Case p = 2. By (5.39) and by the second line of (6.10]), we have

Z / £ (0 — w) (@], 23)96.,0) do

il x(0,L))\S7_ x(0,L)

Capfoo’ (T‘ES R_.D; 1

= ; /ICE\ ¢, >odpe (5.44)
J
Z /|C€‘ 11{5 Od,us

N capfoo' (7“55 R.D; —
jE€Je

By (2-7), (2:11), and (5.28), there holds

_cap/ ™7 (r.S, R.D; £1)
lim 5
e—0 £

By (5.40), the next estimates are satisfied

- ,}/(Q)Cf‘x”2 (£1). (5.45)

16" ¢, 0 = [v = uf*Ty—uso| < Ce in Dp, x (0, L),

, , _ (5.46)
||C€| ]]-C5<0 - |U - u| ]lv—u<0| S CS m DRE X (O,L)
We deduce from [2.9), @.11)), @.11), (5.38)), (5.45), (5.46), and (6.13) that
hntl) IBES V(Q)Cfoog(l) / v — u|21v—u>0nd$ + V(Q)Cfoog(_l) / v — u|2]1v—u<0ndx
£ 16) 16)
/ (S, v — u) ndz. (p=2)
16)
The proof of ([5.34)) is achieved in the case p =2, 0 < 72 < +oo
If 4(P) = 400, we choose a sequence (R.) satisfying, besides , the estimate
RPAW) (1) << 1. (5.47)

By (5.25)) there holds u = v and by (5.31]) we have |y. —u| < CR. in Dg_. Taking (1.9) into account, we
infer that f

/ £ (0 = 096.,0)) do| =< CR2 | [Vo.Pdo < CRAP(). (5.9
(DR, %(0,L))\Sr. x(0,L) o
It follows then from (5.36)), (5.48)), and (5.47)) that lim. .o I.o = 0. O

Proof of (5.35)). If k£ < +o0, noticing that by (5.31)) there holds |Vx. — (¢1, p2,3v)| < cre in T;._, we
deduce from (1.10), (@.11)), and (5.27) that

lim sup A, 9(Vxe)
e—0 T, e—0

Te

/ (p, 05v) dpe = k:/ (p, O3v)ndx

= k/ g"m (93v) ndz.
o
Otherwise, if k& = +o0, then by (5.25) we have d3v = 0, therefore ¢ = 0 (because by (1.9 there holds

9(0) =0) and x. = 0. Accordingly, I.3 = 0 and (|5.35) is proved. O
O
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6 Some properties of f-capacities

Our main objective in this section is to analyze the behavior of the application cap’/ defined by with
respect to certain small subsets of RZ. This analyzis reveals striking differences depending on the rate
of growth p of the function f. These disparities originate mainly in the fact that Gagliardo-Nirenberg-
Sobolev inequality in R? [8, Theorem 9.9], namely

. N
/ 7 dx < C / ViPde VfeW'P(R?) pri=
R? R? N—-p
fails to hold for p > 2. If 1 < p < 2, then by (7.10), for any open subset V of R2, the application

© — ([, |[VelPdz)? is a norm on WyP(V). If 1 < p < N, the completion of W, *(V) with respect to
this norm is the reflexive Banach space defined by

(6.1)

Kj(V) = {f € L’ (R?), VfeLl(R?)}. (6.2)

The space K!(V) is equal to Wol’p(V) if V' is bounded and may be strictly larger otherwise. If 1 < p < 2
and if U is bounded, the infimum problem is achieved in the space K} (V) for whatever choice of
V, whereas if 2 < p, it is not achieved in any Banach space of functions if V' = R? (nor, in general, if
V' is unbounded). This lack of solution, similar to the Stoke’s paradox in fluid mechanics [19], marks a
fundamental difference between the cases 1 < p < 2 and 2 < p.

A series of properties of the application cap’ is collected in the next proposition. Further results
concerning f-capacities and many references on this subject may be found for instance in [I6].

Proposition 6.1. Let f : R — R be a strictly convexr mapping satisfying the growth condition (@ for
some p € (1,400), let S be a bounded connected Lipschitz open subset of R2, and let V be an open subset
of R? such that 0 € S C S C V. Then,
(i) The application o € R — cap? (S, V;a) is convex.
(ii) If 1 < p < 2, then

cap’ (S, V; ) ::min{/ f(%zp)das, YeKEV), vy =ain S}. (6.3)

1%
Moreover, the solution v to s unique and satisfies, for a.e. x € O,
0<yY@)<a if a>0; 0>Y(x)>a if a<O. (6.4)

(iii) Let Vi, Vi be two open subsets of R%. Then

ScvicVe = cap/ (S Vi;a) > cap/ (S, Vo;a) Va€R. (6.5)

Moreover, if (V;,) is an increasing sequence of open subsets of R? such that S C Vi and U;Liol V., =1V,
then

1i5[_1 cap’ (S, Vi; @) = cap’ (S, V;a) Va €R. (6.6)
Furthermore, there holds
lim cap’ (S' 1V'a> = cap’ ($;R% ). (6.7)
A—)O ) )\ ) b )

Assume in addition that 1 < p < 2 or that V is bounded, and let 1, be the solution to the problem deduced
from by substituting Vy, for V.. Then the sequence (1), where ¢, is extended to V by setting 1, = 0
in V '\ V,, converges weakly in K§(V') to the unique solution to .

(iv) Let Si and So be two bounded open subsets of R? such that S; C So C So C V. Then

cap’ (S1,V;a) < cap’/ (S2,V;a) Va eR. (6.8)
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If p < 2 and if (S,,) is an increasing sequence of bounded open subsets of R? such that U:{Z‘i Sn =S8, then
lirf cap’ (S,,,V;a) = cap’(S,V;a) Va €R. (6.9)

(v) Assume that f is p-positively homogeneous and let A > 0, « € R. Then

1
cap/ (AS, V;a) = A2 Pcap’ <S, XV; a) if ASCV,

(6.10)
cap’ (S, V;a) = |a|Pcap’ (S, V;sgn(a)).
(vi) There holds
2 p—1 -2
T() bl s=2= e,
L p \Rz—rg p—1
cap’r (rsD, R.D; a) = (6.11)
7IH(RZ/TE)CL2 if p=2.
(vii) We have
cap’ (S,R%a) >0 VacR\{0} if 1<p<?2, (6.12)
cap’ (S,R%*a)=0 VYaecR if 2<p<+oo. )
(viii) Let (r.) and (R.) be two sequences of positive reals such that r. << R. << e. Then
lim — F(r.S,R.D; ) = li 1 I=*(r.8, R.D; ) (6.13)
55%52cap Tew, e Vj & 762%62(;&1) Tew, e V5 @), .
provided one of these limits exists. Moreover,
1 oo, p oo, p
lim —cap’” " (r.S, ReD; o) = yPecap’™ " (S,R*a) if 1<p<2,
=0 g (6.14)

1 00.p
liH(l) = cap’” " (r.S, R.D; a) = 400 if 2<p< oo,
E—

where v\P) is defined by .

(ix) Assume that p = 2 and let ot (£1) be defined by , . Then for all sequence (R.) satisfying
and for all bounded domain S’ of R?, there holds

. cap’” " (re, S', R, D; £1)
im 5
k—+o00 Ek

— 7(2)6f°°’2(i1) (6.15)

Proof. (i) Let (a,a’) € R, A € (0,1), t > 0 and n € D(V) (resp. ' € D(V)) satisfying the boundary
condition associated with the problem cap/ (S, V;a) (resp. capf(S,V;a’)) and such that

/ f(/V\n)dz < cap/(S,V;a) +t ( resp. / f(/V\n’)da: < cap’(S,V;o/) + t) )
v v

Then A+ (1—\)n’ satisfies the boundary condition associated with the problem cap/ (S, V; Aa+(1—\)a)
and

ch&VMa+O—AMUSﬂjﬁﬁm+ﬂ—kmww

A Vn)d - vn')d
< Af(mx+ﬂ )Af(ﬂx
< Acap’ (S, V;a) + (1 — Ncap? (S, V; /) +t.
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(i) If 1 < p < 2 or if V is bounded, by the density of D(V) in K} (V) and the strong continuity on
K{E (V) of the application ¢ — [, f(V¢)dx, we have

cap’ (S, V;a) = inf{ /f(/V\¢)dx, YpeK{(V), v =a in S}. (6.16)
v

Let (1) be a sequence of minimizers of (6.16). By (1.9) and Korn inequality, we can assume that sup,-
fV |Vipe|Pdr < +o00 hence, if 1 < p < 2 or if V is bounded, then (1)) is bounded in the reflexive Banach
space K{ (V) and converges weakly, up to a subsequence, to some ¢ € KZ(V). It is easy to check that

1 = ain S. The application ¢ — fv f(Vi)dz being convex and strongly continuous on K (V), it is also
weakly lower semi-continuous, therefore

cap/ (S, V;a) = hm f(Vi/JE )dx >/ f( V1/1 Ydz > cap’ (S, V; ).

Therefore the infimum problem (6.16]) is achieved. The uniqueness of its solution results from the strict
convexity of f. Assertion (6.4) follows from the last mentioned uniqueness and from the following property
ifa>0

/ (0 0) A a)de < / fWyde b e Ko(V),
1% 1%

and from a similar one if o < 0.

(iii) The assertion is straightforward. To prove ., we fix t > 0, ¢ € D(V) such that ¢ = «
in S and fv Vz/z dm < cap/(S,V;a) +t and ng € N such that sptyp C V,,,. We have cap’ (S, V,,; )
< fV Vw )dx V¥n > ng, hence
cap’ (S, V;a) < lim}_nf cap’ (8, Vy; @)
< limsup cap’ (S, Vy,; o) < cap? (S, V;a) +t

n—-+oo

Assertion is proved. '
Since 0 € V, we can assume without loss of generality that D C V. By we have lim_q cap’ (S, +D; )

= cap/(S,R?;a). By passing to the limit as A — 0 in the first and third terms of the double inequality
capf (S, R?; )<capf(S 1V;a) < cap (S 1 D; «) we obtain |i
If1<p<2 thenbyandwehave

[Ynlir 1) < Ceap’ (S, Vi a) < Cleap! (8,Via) +1) < +oo,

hence the sequence (¢,) is bounded in K (V) and converges weakly, up to a subsequence, to some
¥ € K§(V). Taking into account, we deduce that

cap’ (S, V;a) > lim cap/(S,V,;a) = hm f(an)

n—-+oo n—-+oo

2/ F(V)dz > cap’ (S, V;a).
\%

(iv) The assertion is straightforward. Let us denote by 1, the unique solution to the problem
deduced from by substituting S, for S. Then (¢,,) is bounded in the reflexive Banach space K (V)
and converges weakly, up to a subsequence, to some ¢ € K§ (V). It is easy to check that ¢ = o a.e. in
S, therefore by the lower weak semicontinuity of the application ¢ — fv f(Vo)dz, we get

liminf cap’ (S, V;a) = hmmf/ fF(Viby)dx >/ f(V)dz > cap’ (S, V; ). (6.17)

n—-—+oo

Conversely, by we have limsup,, ., cap 7(S,,V;a) < cap/ (S, V;a). Assertion is proved.
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(v) Let us fix t > 0 and let ¢p € D(V ) satisfying the boundary conditions associated with capf (AS, V; )
such that cap’ (AS, V;a)+t > [, f Vw))da:. Then the field ¢ € D (1V) defined by setting ¢ (y) := ¥(\y)

satisfies ¢ = a in S and Vgp( ) = )\61/1()\11), therefore by the change of variables formula, since f is
assumed to be p-positively homogeneous, we have

(8 Vie) +4> [ f(Fuye =3 [ 5@)0ay
—~ 1
=\ v dy > N*"Pcap’ (S, ~V;a).
[, S SO = ¥ v (8,575

By the arbitrary choice of A, S, V, the first line of (6.10]) is proved.

(vi) The solution to the problem associated with capil'lp (TED,RED;Q is radial, hence can be easily
computed by solving an elementary one dimensional problem, yielding (see [Bl p. 432]).

(vii) If 1 < p < 2, then by (6.3 . there exists a solution ¢ € K{ (V) to the problem assomated with
cap’ (S, R?; ) ThlS function 1 is not equal to zero, because 1 = « in S, hence by (1.9) there holds
cap’ (S,R?%; ) = [, f(Vp)dx > C [, |V[Pdz > 0, because the application ¢ — ([;, |Vg0|pdx) is a norm
on KF(V).

If p > 2, fixing > 0 such that S C rD, we deduce from 7 , , and that

cap’ (S,R?;a) < Ccapp "(S,R%a) < Ccapél"p(rD,R?’;a) = lim Ccapp "(rD,RD;a) = 0.

R—+oc0

(viii) By (1.9) and (6.11) there holds, for h € {f, f>P},

C v 1 C »
Oy P (r.) > gcapl'l (reS,ReD; ) > ?caph(rgS, R.D;a) > 6—2cap|'| (r.S, R.D; ) > C~P) (1),

therefore if (") € {0,400} (and in particular if p > 2) there is nothing to prove.
Assume that 0< 'y( P) < 400 and let ¢ denote the solution to the problem associated with cap/ (r.S, R. D; c)

(see (ii)). By (1.9) and ( - there holds

Cr2—r if 2
/ |Vp|Pdx < Ceap’ (r.S, R.D;a) < C’cap"‘p(ras, R.D;a) < { Tg l P72 (6.18)
R:D m if p = 2.
By (2.10) we have
1 o I 1 .
A, = ?cap (reS,R.D; ) — ?cap (reS,R.D;a) < 2 fOP(V) — f(Vo)dx
R.D
, 5 (6.19)
1 ’ R 1 B2 17;1
B 2 P
< a/? RED(1 + |Vp|” )dx < C?‘E + 05—2 (/RD |V<p|Pdm> (R?) :
We deduce from and (6.19) that
R? 1 8 8 R? _8
A<C+05(27)” (R2)' 7 <O +Clre) (R2r277)' 77 = o(1) if p<2,
R2 1 -2 R? _a
A <C— +C—ﬁ, (R?) P <C—+ Cye(re) (REUOgrEDl *=o0(1) if p=2,
¢ % (|log(re)[) ™ c

(because if p =2 and 0 < 7(2) < +oo then R?|logre| < €2|logre| = O(1)). In the same manner, we find
that Lcapf(r.S, R-D;a) — Lcap/™ " (r.S, R-D;a) = o(1). The assertion (6.13) and the second line of
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(6.14)) are proved. Since f°° is positively homogeneous of order p, we infer from (2.1)), and (6.10))
that

1 oo 1
; fooor . _ 1 f .
aleo = cap (reS,R-D; ) = ngO ~ cap’ (1.5, R.D; «)

2—p
= lin%) r52 cap’ (S, R. /r-D;a) = »y(p)capf(S, R?; o).
—0 €

The first line of (6.14) is proved.

(ix) First we assume that S = S’ and prove (6.15)) by arguing by contradiction. Otherwise, there exists
a sequence (R.) satisfying ([2.6) and a subsequence (eg,) of () such that

Jim Cey (Bey o #1) = 9@ e(21), (6.20)
for some couple (¢(1), c(—1)) different from (¢/™(1),¢/™*(=1)). By substituting the assumption (6.20)
for the assumption (2.8]) in propositions we obtain the assertions deduced from (5.5)), (5.24]) by
substituting ey, for ¢ and @, for ®, where ®, is deduced from ® by replacing cfow(:lzl) by ¢(£1) in
1' 1) As Fy, is extracted from F,, the same bounds are also satisfied with ® in place of ®..
We deduce that & = ®., hence (¢(1),c(—1)) = (cfm’2(1)7 cfoo’Q(—l)), yielding a contradiction.

If S’ # S, then by (1.7)) there exists a couple of positive reals (r1,r2) such that 1.5 C S’ C r2S, so that
by and (6.10]), there holds

capfw’p(rng, R., /riD;=+1) < capfw’p(rakS’,REkD;il) < capfw’p(rng, R., /roD;=£1)

2 - 5k2 - 5k2 :

(6.21)

€k

Then we pass to the limit as k¥ — 400 in the terms of the first and third terms of the double inequality
(16.21)).
O

7 Appendix: some technical lemmas related to the lower bound

Lemma 7.1. Let (u.) be a sequence satisfying , @ and . Then there exists a sequence ()
verifying (@

Proof. We fix two sequences (a.) and (b.) of positive reals such that
2

e (7.1)

R
1>>a/g>>bg, agbg>87.

By means of De Giorgi’s slicing argument (see Remark , we can choose for each ¢ a finite sequence
(lk,e)keq1,...;m.y such that 0 =lp . <l < -+ <lm.e <lm.41, = L and

1 1 L

= <l.< - ~ 2

(k 4)%*1’“* (k+4) oo Me™ o0

/ |Vue|Pde < C’b—e/ |[Vuc|Pdz (= 0(1)),
H. e Jo

(7.2)
/ |<us>r€\p+|<us>ze€\pdueSCZ—j / uehe. P + |(ue) g [Pdse (= o(1)),

e

o 1 1
H. := Dpg, X ]91 (lk,a - §b6;lk,e + iba) no.
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Then, given a sequence (@) C D(0, L) such that

m me+1
. € 1 1 €
Pe = 1 mn (07 L) \ U (lk,s - 7b5; lk,a + 7ba) y  Pe = 0 on U {lk,e}v
2 2
k=1 k=0 (7,3)
C
OS@E§1a ‘Q0/5|<77
be
we set
me+1
(T, w3) = ) (7{ )%(83)%@, 83)d83) Loy o (23), (7.4)
k=1 l—1,e3lk,e

and claim that the sequence (u.) defined by (7.4) satisfies (5.9).
By Jensen’s inequality we have, since 0 < ¢, < 1,

p

dssdx

me+1

Vus Pdx = / /
~/71 | | Z lk 1E,l

m5+1
~ P
E / / ][ ‘Vug(ﬁc\,s;),)‘ ds;;da:f/ |Vu|Pde,
(- 1,eilk,e) (- 1,5§lk,s) Tre

which proves the first inequality of the first line of (5.9). The second one is obtained in the same way.

The second line of (5.9)) is a consequence of (4.6) and (7.4). By applying Lemma taking (4.11)
into account, we infer that the sequence of measures ((Uc), i) weak-* converges to wnﬁ?fo for some

f e (5) Ve (7, 55)
(I=1,e5lk,e)

ka

w € L”((’)). Hence we just have to prove that wn = vn L'?EO a.e.. To that aim, we first notice that, by

, the sequence ((ue), 1p. pe) weak-x Converges to 0 in M;(O). Since the support of (1 — ¢.){uc),,
is mduded in H. and 0 < ¢. <1 (see (7.3)), we deduce from ([4.7) that (¢.(uc), pc) weak-* converges
in M,(O) to Unﬁfo Let us fix ¢ € C(O ) and set

me+1
= Z <][ "/J(EE’ 83)d83> ]l(lk—l,sﬂlc‘s)(w?’)' (7'5)
(lk—1,e5lk,e)

k=1

It is easy to check that |¢) — ¥E|Loc(@) < Cae << 1 (see , )7 therefore by the two last mentioned
convergences, we have

hm ¢ e (ue) . dpie = /wvndaj hm 1/1 Ue)p e = /wwndx (7.6)

On the other hand there holds, by -7 , . ) and ,

me+1

/%%%Mdus a Z 2ISI/ dz/zk Leilke) <]{zk 15,zkg)¢(x 53)d53> el s

me+1

~ 7.7)
= dx/ ][ P(x, s3 d53> (7[ Ve (ue ngs;g) (
Z T2‘S|/ (lk—1,e3lk,e) < (Ih—1,e3lk,e) ( ) (Ik—1,e3ln,e) < >
:/$€<ﬁ5>redu5'

By the arbitrary choice of 1, we deduce from ([7.6]) and ([7.7) that nv = nw a.e. in O. The first convergence
of the third line of (5.9)) is proved. The proof of the second one is similar.

By (2.10) and Hélder’s inequality, for any measurable subset A C R3, there holds

_e B
<o (JAH1A T lelf)  Vee (A (18

[ () do- /A f(o) de
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By (2.10) and (7.8)), we have

liminf/ f(Vue) dx = liminf/ P (Vue) dx. (7.9)
(Dre x(0,L)\T, (DR x(0,L)\T:

e—0 e—0
By the continuous embedding of W17 (0) into L?" () (see [8, Corollary 9.14]), we have

b\ 11
|u8(x)| dx < Cluelwrroy < C, — ==
p p
Taking (|1.9| , , , , and into account, applying Holder’s inequality and noticing that
by 1] there holds |H | < C E we deduce

(7.10)

W =

/ |fZ P (Vue) = f2 7 (V(pe (@) ue (x)))|de < / LfZ P (Vue) | + [f7F (V (e (3 ) ue (2))) | dae
(Do X (0, I)\Tr, .
<c [ |Vul + “T(x) dx < Cb +b9p(/ e ()" dm)p 1. (- 7) (7.11)
HE € €
b.  C (R2b.\% b R 1 >3 B
<O +bi”<7at) _Cag +C<s2 a.b? = o(l).

Since . =0 on UmEH{lk -}, by applying Jensen’s inequality, we get (see (7.4))

me+1
P (V (pe(x3)ue(x))) de = dr P (V (pe(x3)ue(x))) dos
/(D [P (V(pe(23)ue(2))) /DRE\STE ;/(zk 1E;l“)f (V(pe(23)ue(z)))

Re X (0.D)\T,. —

me+1
> / dz Z (lk,s - lk—l,s)foo’p (][ V(WS(Z?)UJE(I)) d‘T3)
Dgr\Sr. (le—1,e3lk,c)

k=1 (7.12)
me+1 e
:/ dz Z (lke = le—1,6) fF (V <][ Pe(23)ue(2) d$3> ,0)
DRg\S’V‘E k=1 (lk—l.s§lk,e)
_ / o0V, 0) da
(DRE X(OvL))\TTE
The last line of (5.9) results from (7.9)), (7.11) and (7.12).
O

The proof of the next Lemma relies on De Giorgi’s slicing argument (see Remark [7.1]).

Lemma 7.2. Given a bounded sequence (u.) in W1P(O), there exists a sequence (R.) satisfying (@
and

limsup/
e—0 (Dr:\Dr,/2)x(0,L)

R
R. < ?R; if p=2 and 0<~y® < 400 (see )

|Vuel? dz =0,
(7.13)

Proof. We fix a sequence of positive real numbers (Q.) satisfying (see (2.1]))
re € Qp K €, 1<< 78 (Qg) (respectively, Q. < R. if p=2and 0 < v < +o0).

(set for instance Q. = e" with 1 < h < ﬁ if p < 2) and a sequence of positive integers (g.) such that

lim, g q. = +00, r. < 2%Q. < ¢ (respectively, 7. < 29Q. < R. if p =2 and 0 < v® < 400). For
each ¢ > 0, the family of sets (Damq, \ Dam-1¢Q_ )meN,1<m<q. is disjoint, therefore

qe
/ [Vue|P dx S/ [Vue|P dx < C.
=/ (D2m g \Dym—14_)%(0,L) o

m=1
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Hence, for each € > 0, there exists an integer m, such that 1 < m. < ¢. and

C
/ [Vue|P de < —.
(Dame g \Dyme—14_)x(0,L) qe
The sequence (R.) defined by R, = 2™=(Q). satisfies (2.6) and (7.13). O

Lemma 7.3. Assume that (R.) satisfies (@) and , Then, there exists an approximation U. of U
verifying ,
Proof. The sequence (u.) will be defined as follows: we choose a sequence (R, ) satisfying (2.6) and (7.13]),

fix ¢, & € C(O) such that

=0 Dppy x (0,1), C=1ondDp, x (0,L), [96| <

-, R c (7.14)
& =0in (Dg \Sr) x (0,L), & =1in5." x(0,L), |V&|< e
€
where Sffg = Ujeu Sﬁ;_rg (see (5.11))), and set
Ue = U + C((Ue)r, — Ue) + & ((Ue)r, — Ue). (7.15)
Any convex function h on R? verifying (1.9)) satisfies (see [13, Proposition 2.32])
3C > 0; |h(a) — h(b)| < Cla—b|(1 + |a[P~* + [p|P~!) Va, be R,
and by Hélder inequality, for all measurable set A C R3 and all ¢, ¢’ € LP(A), there holds
p=1 _ -
[ 1) da = [ 1) da| < Clo = lanen (1417 +Ielfityy + 1ot (7.16)
Applying (7.16)) we infer
/ F? (V(@.),0) — £°7(V(@.),0) da
(Dre x(0,L)\Tr,
Sia o~ Pol s 1 S~ e
< V(e —ue)|E. (|E€| r + ‘V(UE)%: + |V(u5)|%51) (7.17)

< OV —)|m, (1B + V@ + [V - a5,
E. := LP((Dg, x (0,L)) \ T,.; R?).

We deduce from (5.9), (7.14)), (7.15) and from the next estimate (obtained in a similar way as the fifth
estimate of (4.4))

/ @ — (@) n. | de < CRY / VP da,
(Dr.\DRr, /2)x(0,L) (Dr\DR, /2)x(0,L)
that
/ IV (@, — a.)|P do < c/ Va.|? + [Gi. — (i) g, [P/ R? d
(Dr. % (0,L)\T, (D \Dr. /2)%(0,L) (7.18)
< C/ |Vue|? dz.
(Dr:\Dr,/2)%(0,L)
By (713), (7-17), and (7-18), there holds
/ F7 (Vi 0) — £ (Va.,0) de = o(1). (7.19)
(Dre % (0,L)\Tr,
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On the other hand, by (L.9), the last line of (4.4), (5.9), (7.14), and (7.15), we have

/ FooP(Va,0) do < C i (VG| + [G. — (@), |P/rP) da
Sr\S,. €)x(0,L) (Sre \Sr, €)% (0,L)

1+,r17(1 6)
< _ p 7.20
_c( . ))\/T Ve |P da (7.20)

g

2+p(1*5) 2—
SC CT p(2 5)_0(1)

because 7P) < 400 and 1 < § < 2 (see ( ., . 7.15), (7.19), and (7.20)), the first line of (5.13] .
1.’ 5 12)),

is proved. The second line of - ) follows from 7 14 (7 15)).

Remark 7.1. De Giorgi’s slicing argument [17)] is based on the following observation: if for each & > 0,
(AL)ieq1,...1.y denotes a family of disjoint i-measurable subsets of a set A equipped with a measure i, and
if (fe) is a sequence in L}L(A) such that |f5|L‘1L(A) < C, then for each € > 0, there exists i. € {1,...,1c}

such that fA? |feldp < % This argument is especially useful when non uniformly integrable sequences

bounded in Lt are considered. We employ this argument in the proof of Lemma to establish the
existence of the set H. satisfying and in the proof of Lemma .
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