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Abstract

We determine the effective electric properties of a composite with high contrast. The energy
density is given locally in terms of a convex function of the gradient of the potential. The permittivity
may take very large values in a fairly general distribution of parallel fibers of tiny cross sections. For
a critical size of the cross sections, we show that a concentration of electric energy may arise in a
small region of space surrounding the fibers. This extra contribution is caused by the discrepancy
between the behaviors of the potential in the matrix and in the fibers and is characterized by the
density of the cross sections of the fibers with respect to the cross section of the body in terms of
some suitable notion of capacity. Our results extend those established in [5] in the periodic case for
the p-Laplacian to a general nonlinear framework and a non-periodic distribution of fibers.
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Bataillon, 34095 Montpellier Cedex 5, micha@math.univ-montp2.fr
‡Corresponding author address: Department of Mathematics, Faculty of Science, Mahidol University, Bangkok 10400,

Thailand; Center of Excellence in Mathematics, Bangkok 10400, Thailand, scsok@mahidol.ac.th

1



1 Introduction and setting out of the problem

Composites comprising traces of materials with extreme physical properties have been investigated by
several authors over the past decades in various contexts, such as diffusion equations [5], [9], [11], [15],
[17], fluid mechanics [10], electromagnetic theory [7], linearized elasticity [4], [6]. The common feature of
this body of work is the emergence of a concentration of energy in a small region of space surrounding
the strong components. This extra contribution is characterized by a local density of the geometric
perturbations in terms of an appropriate capacity depending on the type of equations.

In this paper, we determine the effective electric properties of an electrified composite whereby a set of
extremely thin fibers with very large permittivities is embedded in a matrix with permittivity of order 1.
This study may as well concern various steady-state situations in Physics like heat diffusion for instance.
It is interesting to refer to Electricity where capacity has a specific meaning. A similar problem has been
studied by one of the authors with G. Bouchitté [5] in the periodic quasilinear case, for fibers of circular
cross section. In what follows, we investigate the non periodic case and consider a more general non linear
framework and also fibers with arbitrarily shaped cross sections. This is worthwhile, because fibers stem
from draw plates, and therefore are likely to display anisotropic behaviors governed by general convex
functions. Dropping the assumption of periodicity is a challenging task which may lead to quite different
effective problems when composites with high contrast are considered. In our specific study, the effective
problem turns out to show the same general features as in the periodic case, provided the fibers are not
too closely spaced (see (1.6)).

We turn now to a more detailed introduction of the paper. Let O = “O× (0, L) be a bounded smooth
cylindrical open subset of R3. We consider the boundary value problem in Electrostatics

(Pε)



min
u∈u0+W 1,p

Γ0
(O)

Fε(u)−
ˆ
O
qbu dx−

ˆ
Γ1

qsu dH2,

W 1,p
Γ0

(O) =
{
ϕ ∈W 1,p(O) : ϕ = 0 on Γ0

}
, Γ0 ⊂ ∂O, H2(Γ0) > 0, Γ1 = ∂O \ Γ0,

(qb, qs) ∈ Lp
′
(O)× Lp

′
(Γ1), u0 ∈ C1(O),

Å
1
p

+
1
p′

= 1
ã
,

Fε(u) =
ˆ
O\Trε

f(∇u) dx+ λε

ˆ
Trε

g(∇u) dx.

(1.1)

The solution uε of (Pε) describes the electric potential of an electrified fibered composite insulator, where
the distributions of body and surface charges are denoted by qb and qs. The non periodic set Trε occupied
by the fibers is defined in terms of a bounded domain S ⊂ R2 with a Lipschitz boundary, of two small
positive parameter ε, rε such that 0 < rε << ε << 1, and of a finite set

Ωε =
{
ωjε, j ∈ Jε

}
⊂ “O, Jε ⊂ N, (1.2)

by setting

Trε :=
⋃
j∈Jε

T jrε , T jrε := (ωjε + rεS)× (0, L). (1.3)

The parameter rε describes the size of the sections of the fibers, which are homothetical to S, whereas
the parameter ε accounts for the local density of the distribution of the fibers in O through the function
nε defined by

nε(x) :=
∑
z∈Iε

(]Jzε ) 1Y zε (x̂), Jzε :=
{
j ∈ N, ωjε ∈ Y zε

}
, x̂ := (x1, x2),

Y zε := εz + εY, Y := [−1/2, 1/2)2, Iε :=
¶
z ∈ Z2, Y zε ⊂ “O© , (1.4)

where ]A denotes the cardinal of a set A. Given x ∈ O, the scalar nε(x) is the number of points of Ωε
included in the cell Y zε such that x̂ ∈ Y zε , if this cell exists at all. Therefore, nε(x) is an approximation
of the number of fibers included in the parallelepiped Y zε × (0, L) containing x. The assumption

0 ≤ nε(x) ≤ N in O, N ∈ N, nε
?
⇀ n weak star in L∞(O), (1.5)
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ensures that the fibers do not concentrate in some lower dimensional subset of O. We also suppose that

min
j,j′∈Jε,j 6=j′

|ωiε − ωjε| > Rε, dist(Ωε, ∂Ô) > 5
√

2ε, (1.6)

for some sequence of positive reals (Rε) satisfying (2.6). The hypothesis (1.6) guarantees that each fiber is
separated by a sufficient distance from the other fibers and from the lateral boundary of O. The periodic
case corresponds to Ω = {εz, z ∈ Iε} and nε given by nε(x) = 1 if x ∈

⋃
z∈Iε Y

z
ε × (0, L), nε(x) = 0

otherwise. With no loss of generality, we assume that

0 ∈ “O, D ⊂ S, (1.7)

where D denotes the open unit ball of R2. For simplicity, we suppose that (see Remark 2.1 (ii))

u0 = 0, if k̄ = +∞. (1.8)

The density of electric energy is given in terms of two strictly convex functions f , g satisfying a growth
condition of order p ∈ (1,+∞) of the type

α|ξ|p ≤ f(ξ), g(ξ) ≤ β|ξ|p ∀ξ ∈ R3, (α, β > 0), (1.9)

and is assumed to take large values in the fibers. More precisely, we suppose that

lim
ε→0

λε
ε2

r2
ε |S|

= k̄ ∈ (0,+∞]. (1.10)

2 Main result

We show that the effective behavior depends on the limit as ε → 0 of the density of the capacities of
the cross sections of the fibers with respect to the cross section of O in terms of some suitable notion
of capacity defined by (2.5). This density proves to be of the order of magnitude of the parameter γ(p)

given by

γ(p) := lim
ε→0

γ(p)
ε (rε) ∈ [0,+∞], γ(p)

ε (rε) :=
r2−p
ε

ε2
if p 6= 2, γ(2)

ε (rε) :=
1

ε2| log rε|
. (2.1)

A critical case occurs when 0 < γ(p) < +∞. Then, a gap between the mean potential of the constituent
parts of the composite may appear, giving rise to a concentration of electric energy stored in a thin region
of space enveloping the fibers. The effective electric energy then takes the form of the sum of three terms
like

Φ(u, v) =
ˆ
O
f(∇u) dx+ Φcap(v − u) + Φfibers(v), (2.2)

where u stands for the weak limit in W 1,p(O) of the sequence (uε) of the solutions of (1.1), and v
represents a local approximation of the effective potential in the fibers. More precisely, the function nv,
where n is defined by (1.5), is the weak-∗ limit in Mb(O) of the sequence of measures (uεµε), where,
denoting by L3

bO the Lebesgue measure on O,

µε :=
ε2

r2
ε |S|

1Trε (x)L3
bO. (2.3)

The functional Φfibers accounts for the effective electric energy stored inside the fibers and is given by

Φfibers(v) =
ˆ
O
ghom(∂3v)ndx,
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where n is defined by (1.5) and ghom : R→ R is given by

ghom(a) := min
{
g(q) : q ∈ R3, q3 = a

}
. (2.4)

The functional Φcap describes the last mentioned concentration of energy in terms of the gap v − u
between the effective potential in the fibers and in the matrix. It takes the form

Φcap(v − u) =
ˆ
O
cf (S; v − u)ndx.

The function cf (S; .) derives from the capacity capf defined, for all couple (U, V ) of open subsets of R2

such that U ⊂ V and for all α ∈ R, by

capf (U, V ;α) = inf
ßˆ

V

f(∂1ϕ, ∂2ϕ, 0) dx̂ : ϕ ∈ D(V ); ϕ = α in U

™
. (2.5)

To compute cf (S; .), we fix some sequence of positive reals (Rε) satisfying (see (2.1))

rε � Rε � ε, 1 << γ(p)
ε (Rε), (2.6)

and study the asymptotic behavior of the sequence (cfε (Rε)) defined by

cfε (Rε) :=
1
ε2

capf (rεS,RεD;α). (2.7)

This study reveals striking differences depending on the rate of growth p of f (see Section 6). Under
assumption (2.1) we find that the sequence (cfε (Rε)) has an asymptotic behavior similar to that of
the sequence (γ(p)

ε (rε)). We also prove that (cfε (Rε)) is convergent in R if p 6= 2 or if p = 2 and
γ(2) ∈ {0,+∞}. Actually we do not know whether it is convergent if p = 2 and 0 < γ(2) < +∞.
Therefore, in this case, we fix a converging subsequence (cfεk(Rεk)) and study (Pεk). We show that then,
for any sequence (R′ε) satisfying (2.6), the sequence (cfεk(R′εk)) is also convergent. We obtain

cf (S;α) := lim
ε→0

cfε (Rε) ∈ [0,+∞] if p 6= 2 or if p = 2 and γ(2) ∈ {0,+∞},

cf (S;α) := lim
k→+∞

cfεk(Rεk) ∈]0,+∞[ if p = 2 and 0 < γ(2) < +∞.
(2.8)

The extended real cf (S;α) defined by (2.8) proves to be independent of the choice of the sequence (Rε)
satisfying (2.6) (see (2.11) and Proposition 6.1 (ix)). The application α → cf (S;α) turns out to be
positively homogeneous of degree p, that is (under the convention ∞.0 = 0)

cf (S;α) = cf (S; sgn(α))|α|p ∀α ∈ R. (2.9)

The extended reals cf (S,±1) can be expressed in terms of γ(p) and of the “p-recession” function of f ,
that is the convex function, positively homogeneous of degree p, defined by

f∞,p(ξ) = lim sup
t→+∞

f(tξ)
tp

.

We assume that there exists α′ > 0, 0 < β′ < p such that for all ξ ∈ R3

|f(ξ)− f∞,p(ξ)| ≤ α′(1 + |ξ|β
′
). (2.10)

Under this hypothesis, we get (see Proposition 6.1 (viii))

cf (S;±1) = γ(p)capf
∞,p

(S,R2;±1) if p < 2,

cf (S;±1) = cf
∞,2

(±1)γ(2) if p = 2,

cf (S;±1) = γ(p) = +∞ if p > 2.

(2.11)

In the case p = 2, we obtain no explicit formula giving the constant cf
∞,2

in terms of capf like for p 6= 2.
This means that the real numbers cf

∞,2
(±1) are simply defined by (2.8), (2.11). An explicit computation
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is possible in some simple cases: for instance c|.|
2
(1) = c|.|

2
(−1) = π (see (6.11)). A peculiar feature of

the case p = 2 is that cf
∞,2

does not depend on S (see Proposition 6.1 (ix)), whereas cf (S;±1) does if
p < 2 and 0 < γ(p) < +∞.
The limiting problem associated with (1.1) is given by

(Phom) : min
ß
Fhom(u)−

ˆ
O
qbu dx−

ˆ
Γ1

qsu dH2 : u ∈ u0 +W 1,p
Γ0

(O)
™
, (2.12)

where (see (2.4), (2.11))

Fhom(u) = inf {Φ(u, v) : v ∈ Lp(O)} ,

Φ(u, v) =


ˆ
O
f(∇u) dx+

ˆ
O
cf (S; v − u)ndx+ k̄

ˆ
O
ghom(∂3v) ndx

if (u, v) ∈
(
u0 +W 1,p

Γ0
(O)

)
× Vp,

+∞ otherwise,

Vp :=
¶
v ∈ Lp(O) : ∂3v ∈ Lp(O), v = u0 on Γ0 ∩

(“O × {0, L} )© . (2.13)

The result stated in the next theorem in the case p = 2, 0 < γ(2) < +∞ concerns the subsequence (uεk).
For notational simplicity, this subsequence is still denoted by (uε).

Theorem 2.1. Assume (1.2-1.10), (1.5), (2.1), (2.10), then the unique solution uε of (1.1) converges
weakly in W 1,p(O) as ε tends to 0 toward the unique solution u to (2.12). Moreover, there holds

lim
ε→0

ß
Fε(uε)−

ˆ
O
qbuε dx−

ˆ
Γ1

qsuε dH2

™
= Fhom(u)−

ˆ
O
qbu dx−

ˆ
Γ1

qsu dH2. (2.14)

In addition, if γ(p) > 0, then the sequence of measures (uεµε), where µε is defined by (2.3), weak ∗
converges in Mb(O) to nvL3

bO, where n is defined by (1.5) and v is the unique element of Vp, given by
(2.13), such that Fhom(u) = Φ(u, v).

Remark 2.1. (i) If γ(p) = 0, the variables u, v are independent and the effective energy simply reads

Fhom(u) =
ˆ
O
f(∇u) dx+ C, C := inf

v∈Vp

ˆ
O
ghom(∂3v)dx (γ(p) = 0).

If γ(p) = +∞ (in particular when p > 2), the functional Φ(u, v) takes infinite values unless u = v, hence

Fhom(u) =
ˆ
O
f(∇u) dx+ k̄

ˆ
O
ghom(∂3u) ndx (γ(p) = +∞),

and the effective energy is that of the matrix augmented by a permittivity term in the direction of the
fibers.
If 0 < γ(p) < +∞, the effective electric energy is not a local functional. This means that it can not
be written as the integration over O of a density of electric energy of the form h(x, u(x),∇u(x), ...).
By introducing the additional state variable v, we can write the effective energy under the form of a
local functional of the couple (u, v). This internal or hidden state variable is the limit of a suitable
scaled of the electric potential in the sole fibers and accounts for the micro-structure. The total effective
electric energy is that of a body totally filled up by the matrix material augmented by a term which is the
infimal convolution of the last mentioned permittivity term supplied by the periodic distribution of fibers
and a bonding term depending on the gap of electric potentials in the matrix and in the fibers. These
concentrations of electric energy in the matrix in the immediate vicinity of the fibers, which may occur
only when p ≤ 2, induce a total effective energy lower than Φ(u, u). The structure of Φ stems from the
contribution of each term entering the decomposition:

Fε(u) =
ˆ
O\(DRε×(0,L))

f(∇u) dx+
ˆ

(DRε×(0,L))\Trε
f(∇u) dx+ λε

ˆ
Trε

g(∇u) dx, (2.15)
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where, given (Rε) satisfying (2.6), the set DRε × (0, L) is the Rε-neighborhood of the fibers defined by
(4.3). The set (DRε × (0, L)) \ Trε is a small portion of the matrix surrounding the fibers where electric
energy may concentrate due to the gap between the mean electric potentials in the fibers and in the matrix.
This will provide a limit capacitary term associated with f∞,p(“∇u, 0) on RεD \ rεS. The contribution of
O \ (DRε × (0, L)) is obvious and the contribution of the fibers is classical (see [1, 18]).

(ii) The simplifying assumption (1.8) ensures that the effective electric energy stored in the fibers
vanishes if k̄ = +∞. An alternative is to assume that u0 takes the same values on the intersection of the
opposite bases of O with Γ0.

3 Conjecture for the case of a random distribution of fibers

In this section, we indicate a possible generalization of the periodic model to the case of parallel fibers
randomly distributed in accordance with a stationary point process. In the model under consideration,
the cross sections are not uniformly (i.e., periodically) distributed but their distribution is periodic in
law i.e., the probability of presence of the sections is invariant under a suitable group (τz)z∈Z2 defined
below. In the stochastic homogenization framework, the distribution of the sections is then said to be
statistically homogeneous. We are going to give some precisions on this model.
Let us first define the discrete dynamical system (Ω,PPP , (τz)z∈Z2) that models the distribution of the
sections of the fibers. Given d > 0, we set

Ω :=
{

(ωi)i∈N : ωi ∈ R2, |ωk − ωl| ≥ d for k 6= l
}
, (3.1)

and denote by Σ the trace of the Borel σ-algebra of (R2)∞ on Ω. We equip Ω with the group (τz)z∈Z2

defined by
τzω = ω − z,

where ω − z must be understood as (ωi − z)i∈N, and we denote by F the σ-algebra made up of all the
events of Σ which are invariant under the group (τz)z∈Z2 . We assume the existence of a probability
measure PPP on (Ω,Σ) for which (τz)z∈Z2 is a measure preserving transformation, i.e.,

PPP#τz = PPP for all z ∈ Z2,

where PPP#τz denotes the pushforward of the probability measure PPP by the application τz. For any
measurable function X : Ω→ R, we denote by EEEFX its conditional expectation given F , i.e., the unique
F-measurable function satisfying

ˆ
E

EEEFX dPPP =
ˆ
E

X dPPP for every E ∈ F .

Note that EEEFX is τz-invariant (hence periodic) and that under the additional ergodic hypothesis which
asserts that F is trivial, that is made up of events with probability measure 0 or 1, EEEFX is constant and
nothing but the expectation EEE(X) :=

´
Ω
X dPPP . Note also that the following asymptotic independance

hypothesis

lim
|z|→+∞

PPP (E ∩ τzE′) = PPP (E)PPP (E′), (3.2)

is a stronger but more intuitive condition yielding ergodicity.

The random set of fibers is defined by

Trε(ω) :=
⋃

j∈Jε(ω)

T jrε , T jrε := (εωj + rεS)× (0, L), Jε(ω) :=
¶
j ∈ N, ωj ∈ “O© . (3.3)

We will denote by (Pε(ω)) the problem associated with the random functional Fε(ω, .).
Consider the random function

n0 : Ω→ N, ω 7→ n0(ω) := #
¶
i ∈ N : ωi ∈ “Y © , “Y := [0, 1[2. (3.4)
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In all likelyhood, the conditional expectation EEEFn0(ω) is the only additional corrector of the limit energy
obtained in the periodic case. More precisely let us denote by Φ(ω, .) the random functional:

Φ(ω, u, v) =


ˆ
O
f(∇u) dx+EEEFn0(ω)k̄

ˆ
O
ghom(∂3v) dx+EEEFn0(ω)

ˆ
O
cf (S; v − u)dx;

if (u, v) ∈
(
u0 +W 1,p

Γ0
(O)

)
× Vp,

+∞ otherwise,

(3.5)

and set Fhom(ω, u) = inf {Φ(ω, u, v) : v ∈ Lp(O}. Then one may reasonably conjecture that

Conjecture 3.1. Under assumptions stated above, when ε tends to 0, the unique random solution uε(ω)
to the problem (Pε(ω)), deduced from (1.1) by substituting (3.3) for (1.3), almost surely weakly converges
in W 1,p(O) toward the unique solution u(ω) to

(P(ω)) min
ß
Fhom(ω, u)−

ˆ
O
qbu dx−

ˆ
Γ1

qsu dH2 : u ∈ u0 +W 1,p
Γ0

(O)
™
.

Moreover,

lim
ε→0

ß
Fε(ω, uε)−

ˆ
O
qbuε dx−

ˆ
Γ1

qsuε dH2

™
= Fhom(ω, u)−

ˆ
O
qbu dx−

ˆ
Γ1

qsu dH2,

and, if γ(p) > 0, vε(ω) :=
ε2

r2|D|
1Trε (ω)uε(ω) almost surely weak ∗ converges in Mb(O) to some v(ω)

belonging to Vp such that Fhom(ω, u) = Φ(ω, u(ω), v(ω)). Furthermore, under the ergodic hypothesis (for
instance under condition (3.2)), there holds EEEFn0(ω) = EEEn0 so that the functionals Φ, Fhom and the
functions u and v are deterministic.

We hope to treat the mathematical analysis in a forthcoming paper.

4 Technical preliminaries and a priori estimates

The proof of Theorem 2.1 rests on an extensive investigation into the asymptotical behavior of the

sequence (uε) of the solutions to (1.1) and, more generally, of sequences (uε) satisfying

sup
ε>0

Fε(uε) < +∞. (4.1)

A commonly used method consists of introducing auxiliary sequences designed to characterize the com-
portment of the diverse constituents of the composite. The delicate step lies in the analysis of the fibers’
behavior. An interesting approach consists in investigating the sequence (uεµε), where µε denotes the
measure supported on the fibers defined by (2.3). To that aim, given a sequence (Rε) satisfying (2.6), we
introduce the operators 〈.〉Rε , 〈.〉rε , 〈〈.〉〉ε defined on Lp((0, L);W 1,p(O)) by setting

〈ϕ〉Rε(x) :=
∑
j∈Jε

( 
∂Dj

Rε

ϕ(ŝ, x3) dH1(ŝ)
)
1Dj

Rε

(x̂),

〈ϕ〉rε(x) :=
∑
j∈Jε

( 
∂Djrε

ϕ(ŝ, x3) dH1(ŝ)
)
1Dj

Rε

(x̂),

〈〈ϕ〉〉ε :=
∑
z∈Iε

Ç 
Y zε

ϕ(s, x3)dŝ

å
1Y zε (x̂),

(4.2)

where

Dj
Rε

= ωjε +RεD, DRε =
⋃
j∈Jε

Dj
Rε
. (4.3)

The series of estimates stated below will take a crucial part in the proof of Theorem 2.1 (the proof of
Lemma 4.1 is situated at the end of Section 4).
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Lemma 4.1. There exists a constant C such that for all ϕ ∈ Lp((0, L);W 1,p(“O)),

ˆ
|〈ϕ〉Rε − 〈ϕ〉rε |

p
dµε ≤


C

γ
(p)
ε (rε)

´
O |“∇ϕ|pdx, if p ≤ 2,

C

γ
(p)
ε (Rε)

´
O |“∇ϕ|pdx, if p > 2,

ˆ
|〈〈ϕ〉〉ε − 〈ϕ〉rε |

p
dµε ≤

C

γ
(p)
ε (rε)

ˆ
O
|“∇ϕ|pdx,

ˆ
|〈〈ϕ〉〉ε − 〈ϕ〉Rε |

p
dµε ≤

C

γ
(p)
ε (Rε)

ˆ
O
|“∇ϕ|pdx,

ˆ
Y zε ×(0,L)

|ϕ− 〈〈ϕ〉〉ε|p dx ≤ Cεp
ˆ
Y zε ×(0,L)

|“∇ϕ|pdx ∀z ∈ Iε,
ˆ
|ϕ− 〈ϕ〉rε |pdµε ≤ Crpε

ˆ
|“∇ϕ|pdµε,

(4.4)

where γ(p)
ε (.) is defined by (2.1).

The next Lemma states a lower bound inequality for convex functionals on measures.

Lemma 4.2. Let O be an open subset of RN and let µε and µ be bounded Radon measures in O such
that µε weak ∗ converges in Mb(O) toward µ and fε a sequence of µε-measurable functions such that
supε

´
O |fε|

p dµε < +∞. Then

i) the sequence of measures (fεµε) is weak ∗ relatively compact in Mb(O) and every cluster point ν is
of the form ν = fµ with f ∈ Lp(O).

ii) If fεµε
?
⇀ fµ, then lim inf

ε→0

ˆ
j(fε) dµε ≥

ˆ
j(f) dµ for all convex lower semi-continuous function

j on R satisfying a growth condition of order p. In addition

lim inf
ε→0

ˆ
|f+
ε |p dµε ≥

ˆ
|f+|p dµ,

lim inf
ε→0

ˆ
|f−ε |p dµε ≥

ˆ
|f−|p dµ.

(4.5)

Proof. The proof of this lemma is given in [5] with j = 1
p | · |

p but the duality argument can be extended
to any convex lower semi-continuous function satisfying a growth condition of order p. Assertion (4.5)
results from the fact that if f+

ε µε
?
⇀ gµ and fεµε

?
⇀ fµ, then g ≥ f+ µ−a.e., which can be easily checked

by using positive continuous test functions (notice that in general, g 6= f+).

The main results of Section 4 are stated in the next Proposition, where the asymptotic behavior of several
sequences associated to some sequence (uε) satisfying (4.1) is specified.

Proposition 4.1. Assume (1.9), (1.10), (2.1), (5.1). Let (uε) be a sequence in W 1,p(O) satisfying (4.1)
and let (µε), (〈uε〉Rε) and (〈〈uε〉〉ε) be defined by (2.3), (4.2). Then the next estimates hold true

ˆ
O
|uε|p + |∇uε|pdx ≤ C,

ˆ
|∂3uε|p + |uε|p + |〈uε〉rε |p + |〈uε〉Rε |pdµε ≤ C,

(4.6)

and there exists u ∈ (u0 + W 1,p
Γ0

(O)) and v ∈ Vp such that, up to a subsequence, the next convergences
take place

uε ⇀ u weakly in W 1,p(O)

uεµε
?
⇀ nvL3

bO, ∂3uεµε
?
⇀ n∂3vL3

bO weak ∗ in Mb(O),

〈uε〉Rεµε
?
⇀ nuL3

bO, 〈uε〉rεµε
?
⇀ nvL3

bO weak ∗ in Mb(O).

(4.7)

In addition, v = u if γ(p) = +∞ (in particular when p > 2).
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Proof. The first line of (4.6) follows from (4.1), the Dirichlet condition on Γ0 and Poincaré inequality.
We deduce that, up to a subsequence,

uε ⇀ u weakly in W 1,p(O), (4.8)

for some u ∈ W 1,p(O). We infer from the weak continuity of the trace application in W 1,p(O) that
u ∈ (u0 +W 1,p

Γ0
(O)). It follows from the fourth line of (4.4) that the sequence (〈〈uε〉〉ε) defined by (4.2)

strongly converges to u in Lp(O). We deduce then from (1.5) that

〈〈uε〉〉εnε ⇀ un weakly in Lp(O). (4.9)

We easily deduce from (2.3), (1.5), (4.2), and (4.9) that
ˆ
|〈〈uε〉〉ε|pdµε ≤ 9|nε|L∞(O)

ˆ
O
|〈〈uε〉〉ε|pdx ≤ C. (4.10)

On the other hand, by (1.5) and (2.3) we have

µε
?
⇀ nL3

bO weak ∗ in Mb(O). (4.11)

By applying Lemma 4.2, taking (4.10) and (4.11) into account, we deduce that there exists f ∈ Lp(O)
such that, up to a subsequence,

〈〈uε〉〉εµε ⇀ fnL3
bO weak ∗ in Mb(O). (4.12)

Testing the convergences (4.9) and (4.12) with a given ϕ ∈ D(O), taking the estimate |〈〈ϕ〉〉ε − ϕ| ≤ Cε
in O into account (this estimate is satisfied provided ε is sufficiently small, see (1.4), (4.2)), we get

lim
ε→0

ˆ
O
〈〈ϕ〉〉ε〈〈uε〉〉εnεdx =

ˆ
O
ϕundx; lim

ε→0

ˆ
〈〈ϕ〉〉ε〈〈uε〉〉εdµε =

ˆ
O
ϕfndx.

We prove below that

lim
ε→0

∣∣∣∣ˆ
O
〈〈ϕ〉〉ε〈〈uε〉〉εnεdx−

ˆ
〈〈ϕ〉〉ε〈〈uε〉〉εdµε

∣∣∣∣ = 0. (4.13)

We deduce that
´
O ϕundx =

´
O ϕfndx and then, by the arbitrary choice of ϕ, that fn = un a.e. in O.

Therefore,

〈〈uε〉〉εµε
?
⇀ nuL3

bO weak ∗ in Mb(O). (4.14)

By (1.10) and (4.1), we have ˆ
|∂3uε|p dµε ≤ C. (4.15)

From (2.1), (4.4), (4.6), and (4.10), we derive
ˆ
|uε|p + |〈uε〉rε |p + |〈uε〉Rε |pdµε ≤ C,

which, joined with (4.15), yields (4.6). We deduce from (2.6), the third line of (4.4), and (4.14), that

〈uε〉Rεµε
?
⇀ nuL3

bO weak ∗ in Mb(O). (4.16)

By (4.6) and Lemma 4.2,

〈uε〉rεµε
?
⇀ nvL3

bO, uεµε
?
⇀ nv1L3

bO, ∂3uεµε
?
⇀ nwL3

bO weak ∗ in Mb(O), (4.17)

for some (v, v1, w) ∈ (Lp(O))3. It follows from the estimate stated in the fifth line of (4.4) that

nv = nv1 a.e. in O. (4.18)
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To show that

nw = n∂3v a.e. in O and nv = nu0 on Γ0 ∩ “O × {0, L}), (4.19)

it suffices (as in [5]) to pass to the limit in
´
ϕ∂3uε dµε by integrating by parts with first ϕ ∈ D(O), next

ϕ of the form ϕ(x) = θ(x̂)ψ(x3) with θ ∈ D(O0), O0 = {x̂ ∈ ω : (x̂, 0) ∈ Γ0}, ψ(0) = 1, ψ(L) = 0 and
finally θ ∈ D(OL), OL = {x̂ ∈ ω : (x̂, L) ∈ Γ0}, ψ(0) = 1, ψ(L) = 0.
Collecting (4.8), (4.16), (4.17), (4.18), (4.19), the convergences (4.7) are proved. It remains to notice that
the first line of (4.4) yields v = u when p > 2 or γ(p) = +∞: introducing an additional state variable to
account for the asymptotic behavior of the electric potential in the fibers is not necessary!

Proof of (4.13). By (1.3), (1.4), (2.3), and (4.2) there holds

∣∣∣∣ˆ
O
〈〈ϕ〉〉ε〈〈uε〉〉εnεdx =

ˆ
〈〈ϕ〉〉ε〈〈uε〉〉εdµε

∣∣∣∣ , if Trε ∩
⋃
z∈Iε ∂Y

z
ε × (0, L) = ∅, (4.20)

hence in this case there is nothing to prove. However, the equality (4.13) may fail to hold in the general
case, because the border of some cells Y zε can possibly intersect some of the sections of the fibers. To
circumvent this difficulty, we introduce the operator 〈〈.〉〉1,ε defined by (see (1.4))

〈〈ϕ〉〉1,ε :=
∑
z∈Iε

Ç 
Y zε

ϕ(s, x3)dŝ

å
1Gzε (x̂),

Gzε :=

Ñ
Y zε ∪

⋃
j∈Jzε

Sjrε

é
\

⋃
j∈Jε\Jzε

Sjrε .

(4.21)

We deduce from (2.3), (4.2) and (4.21) that

ˆ
〈〈ϕ〉〉1,ε〈〈uε〉〉1,εdµε =

∑
j∈Jε

ˆ L

0

ˆ
Sjrε

〈〈ϕ〉〉1,ε〈〈uε〉〉1,ε
ε2

r2
ε |S|

dx

=
∑
z∈Iε

∑
j∈Jzε

ˆ L

0

ˆ
Sjrε

〈〈ϕ〉〉1,ε〈〈uε〉〉1,ε
ε2

r2
ε |S|

dx

=
∑
z∈Iε

∑
j∈Jzε

ˆ L

0

ˆ
Sjrε

Ç 
Y zε

ϕ(s, x3)dŝ

åÇ 
Y zε

uε(s, x3)dŝ

å
ε2

r2
ε |S|

dx

=
∑
z∈Iε

∑
j∈Jzε

ˆ L

0

ˆ
Y zε

Ç 
Y zε

ϕ(s, x3)dŝ

å
uε(s, x3)dx

=
∑
z∈Iε

ˆ L

0

ˆ
Y zε

Ç 
Y zε

ϕ(s, x3)dŝ

åÇ 
Y zε

uε(s, x3)dŝ

å
nεdx

=
ˆ
O
〈〈ϕ〉〉ε〈〈uε〉〉εnεdx.

(4.22)

By (4.22), the proof of (4.13) is achieved provided we establish that

lim
ε→0

∣∣∣∣ˆ
O
〈〈ϕ〉〉1,ε〈〈uε〉〉1,ε − 〈〈ϕ〉〉ε〈〈uε〉〉εdµε

∣∣∣∣ = 0. (4.23)

To that aim, we notice that since ϕ ∈ D(O), by (4.2) and (4.21) the following estimate holds true:

|〈〈ϕ〉〉1,ε − 〈〈ϕ〉〉ε| ≤ Cε. (4.24)
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We deduce that

∣∣∣∣ˆ
O
〈〈ϕ〉〉1,ε〈〈uε〉〉1,ε − 〈〈ϕ〉〉ε〈〈uε〉〉εdµε

∣∣∣∣
≤
ˆ
O
|〈〈ϕ〉〉1,ε||〈〈uε〉〉1,ε − 〈〈uε〉〉ε|dµε +

ˆ
O
|〈〈uε〉〉ε||〈〈ϕ〉〉1,ε − 〈〈ϕ〉〉ε|dµε

≤ C
ˆ
O
|〈〈uε〉〉1,ε − 〈〈uε〉〉ε|dµε + Cε

ˆ
O
|〈〈uε〉〉ε|dµε.

(4.25)

We prove below that
ˆ
O
|〈〈uε〉〉1,ε − 〈〈uε〉〉ε|dµε ≤ Cε, (4.26)

ˆ
O
|〈〈uε〉〉ε|dµε ≤ C. (4.27)

Assertion (4.23) results from (4.25), (4.26), and (4.27). Assertion (4.13) is proved.
Proof of (4.26). By (1.4), (2.3), there holds

ˆ
O
|〈〈uε〉〉1,ε − 〈〈uε〉〉ε|dµε =

∑
z∈Iε

∑
j∈Jzε

ε2

r2
ε |S|

ˆ L

0

ˆ
Sjrε

|〈〈uε〉〉1,ε − 〈〈uε〉〉ε|dx. (4.28)

By (4.21), the function 〈〈uε〉〉1,ε takes constant values on each set Sjrε×{x3}, whereas the function 〈〈uε〉〉ε,
defined by (4.2), may take up to four different values on Sjrε × {x3} if Sjrε ∩ ∂Y

z
ε 6= ∅ and j ∈ Jzε .

For each z ∈ Iε, we denote by Zzε the union of the cells Y z
′

ε whose adherence has a non empty intersection
with Y zε . The set Zzε is the subset of ε(z + [−1, 2[2) defined by

Zzε :=
⋃
k∈Az

Y z+kε , Az := (Z2 ∩ [−1, 1]2) ∩
{
k ∈ Z2, z + k ∈ Iε

}
. (4.29)

Let us fix z ∈ Iε. Noticing that #Az ≤ 9, we infer that for each j ∈ Jzε and for a.e. x3 ∈ (0, L), we have

ε2

r2
ε |S|

ˆ
Sjrε

|〈〈uε〉〉1,ε − 〈〈uε〉〉ε|dx̂

=
∑
k∈Az

ε2

r2
ε |S|

ˆ
Sjrε∩Y

z+k
ε

∣∣∣∣∣
Ç 

Y zε

uε(s, x3)ds

å
−
Ç 

Y z+kε

uε(s, x3)ds

å∣∣∣∣∣ dx̂
≤
∑
k∈Az

ε2

∣∣∣∣∣
Ç 

Y zε

uε(s, x3)ds

å
−
Ç 

Y z+kε

uε(s, x3)ds

å∣∣∣∣∣
≤ C

∑
k∈Az

ˆ
Zzε

∣∣∣∣∣
Ç 

Y zε

uε(s, x3)ds

å
−
Ç 

Y z+kε

uε(s, x3)ds

å∣∣∣∣∣ dx̂
≤ C

∑
k∈Az

ˆ
Zzε

∣∣∣∣∣uε(x̂, x3)−
Ç 

Y zε

uε(s, x3)ds

å∣∣∣∣∣+

∣∣∣∣∣uε(x̂, x3)−
Ç 

Y z+kε

uε(s, x3)ds

å∣∣∣∣∣ dx̂
≤ C

∑
k∈Az

ˆ
Zzε

∣∣∣∣∣uε(x̂, x3)−
Ç 

Y z+kε

uε(s, x3)ds

å∣∣∣∣∣ dx̂
≤
∑
k∈Az

Ckε

ˆ
Zzε

∣∣∣“∇uε(x̂, x3)
∣∣∣ dx̂ ≤ Cεˆ

Zzε

∣∣∣“∇uε(x̂, x3)
∣∣∣ dx̂.

(4.30)
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The next to last inequality in (4.30) being deduced from a change of variables in Poincaré-Wirtinger
inequality

´
]−1,2[2

∣∣∣ϕ− ffl
k+]0,1[2

ϕds
∣∣∣ dx ≤ Ck

´
]−1,2[2

|∇ϕ|dx in W 1,1(] − 1, 2[2). Noticing that by (1.4)
and (1.5) there holds ]Jzε ≤ N , we deduce from (4.28), and (4.30) that

ˆ
O
|〈〈uε〉〉1,ε − 〈〈uε〉〉ε|dµε ≤ Cε

∑
z∈Iε

]Jzε

ˆ L

0

ˆ
Zzε

∣∣∣“∇uε(x̂, x3)
∣∣∣ dx

≤ Cε
∑
z∈Iε

ˆ L

0

ˆ
Zzε

∣∣∣“∇uε(x̂, x3)
∣∣∣ dx. (4.31)

By (4.29), each set Y zε is included in at most 9 distinct sets Zz
′

ε , therefore by (4.6) we have

ε
∑
z∈Iε

ˆ L

0

ˆ
Zzε

∣∣∣“∇uε(x̂, x3)
∣∣∣ dx ≤ 9ε

∑
z∈Iε

ˆ L

0

ˆ
Y zε

∣∣∣“∇uε(x̂, x3)
∣∣∣ dx

≤ 9ε
ˆ
O

∣∣∣“∇uε∣∣∣ dx ≤ CεÅˆ
O

∣∣∣“∇uε∣∣∣p dxã 1
p

≤ Cε.

(4.32)

The estimate (4.26) follows from (4.31) and (4.32).
Proof of (4.27). By (2.3), (4.6), (4.2), and (4.29), there holds

ˆ
O
|〈〈uε〉〉ε|dµε =

∑
z∈Iε

∑
j∈Jzε

ε2

r2
ε |S|

ˆ L

0

ˆ
Sjrε

|〈〈uε〉〉ε|dx

=
∑
z∈Iε

∑
j∈Jzε

∑
k∈Az

ε2

r2
ε |S|

ˆ L

0

ˆ
Sjrε∩Y

z+k
ε

∣∣∣∣∣
 
Y z+kε

uε(s, x3)ds

∣∣∣∣∣ dx
≤ C

∑
z∈Iε

∑
k∈Az

ˆ L

0

∣∣∣∣∣
ˆ
Y z+kε

uε(s, x3)ds

∣∣∣∣∣ dx3 ≤ C
ˆ
O
|uε|dx ≤ C,

(4.33)

because ]Az and ]Jzε are uniformely bounded. Assertion (4.27) is proved.

Proof of Lemma 4.1. By (2.3) and (4.2), we have

ˆ
|〈ϕ〉Rε − 〈ϕ〉rε |

p
dµε =

∑
j∈Jε

ε2

r2
ε |S|

ˆ L

0

ˆ
Sjrε

|〈ϕ〉Rε − 〈ϕ〉rε |
p
dx

=
∑
j∈Jε

ε2

ˆ L

0

∣∣∣〈ϕ〉jRε − 〈ϕ〉jrε∣∣∣p dx3

=
∑
j∈Jε

ε2

R2
ε|D|

ˆ L

0

ˆ
Dj
Rε

|〈ϕ〉Rε − 〈ϕ〉rε |
p
dx,

(4.34)

where 〈ϕ〉jrε(x3), 〈ϕ〉jRε(x3) denote the constant value taken by the functions 〈ϕ〉rε and 〈ϕ〉Rε on Dj
Rε
×

{x3}. The next inequality is proven in [5, Lemma A4] if p ≤ 2 and is derived from the formula stated in
[5, p. 433, l. -2] if p > 2:

∀(R,α) ∈ R+ × (0, 1],
ˆ
DR

∣∣∣∣ϕ−  
∂DαR

ϕds

∣∣∣∣p dx ≤ C Rp

h(α)

ˆ
DR

|∇ϕ|pdx,

h(α) = α2−p if p 6= 2, h(α) =
1

1 + | logα|
if p = 2.

(4.35)
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By (4.35) there holds, for a.e. x3 ∈ (0, L) and all j ∈ Jε,
ˆ
Dj
Rε

|〈ϕ〉Rε − 〈ϕ〉rε |
p
dx̂ ≤ C

ˆ
Dj
Rε

|ϕ− 〈ϕ〉Rε |
p
dx̂+ C

ˆ
Dj
Rε

|ϕ− 〈ϕ〉rε |
p
dx̂

≤

C
Rpε

h( rεRε )
´
Dj
Rε

|∇ϕ|p dx̂, if p ≤ 2,

CRpε
´
Dj
Rε

|∇ϕ|p dx̂, if p > 2.

(4.36)

The first line of (4.4) follows from (2.1), (4.34), and (4.36). Similarly, setting

Jzε :=
{
j ∈ Jε, ωjε ∈ Y zε

}
, (4.37)

and denoting by 〈〈ϕ〉〉zε(x3) the constant value taken by 〈〈ϕ〉〉ε in Y zε × {x3}, we get (see (4.2))

ˆ
|〈〈ϕ〉〉ε − 〈ϕ〉rε |

p
dµε =

∑
z∈Iε

∑
j∈Jjε

ˆ L

0

∣∣〈〈ϕ〉〉zε − 〈ϕ〉jrε∣∣p ε2dx3

=
∑
z∈Iε

∑
j∈Jjε

ˆ L

0

∣∣∣∣∣
 
Y zε

(ϕ− 〈ϕ〉jrε)(x̂, x3)dx̂

∣∣∣∣∣
p

ε2dx3

≤ C
∑
z∈Iε

∑
j∈Jjε

ˆ L

0

ˆ
Y zε

∣∣ϕ− 〈ϕ〉jrε∣∣p dx.
(4.38)

Noticing that by (1.6), (1.4) and (4.37) we have

Y zε ⊂ D(ωjε,
√

2ε) ⊂ Qzε ⊂ “O ∀z ∈ Iε,∀j ∈ Jzε , Qzε := ε(z + 5Y ), (4.39)

we infer from (4.2), (4.35) that for a.e. x3 ∈ (0, L), all z ∈ Iε and all j ∈ Jzε , there holds
ˆ
Y zε

∣∣ϕ− 〈ϕ〉jrε∣∣p (s, x3)dŝ ≤
ˆ
D(ωjε,

√
2ε)

∣∣ϕ− 〈ϕ〉jrε∣∣p (s, x3)dŝ

≤ C εp

h
(
rε
ε

) ˆ
D(ωjε,

√
2ε)

|∇ϕ|p (s, x3)dŝ

≤ C εp

h
(
rε
ε

) ˆ
Qzε

|∇ϕ|p (s, x3)dŝ.

(4.40)

By (1.5) we have

]Jzε ≤ N ∀z ∈ Iε. (4.41)

By (4.39) and (4.41), there holds

∑
{z∈Iε, Jzε 6=∅}

ˆ L

0

ˆ
Qzε

|∇ϕ|p dx ≤ 25
ˆ
O
|∇ϕ|p dx,

we deduce from (4.38) and (4.40) that

ˆ
|〈〈ϕ〉〉ε − 〈ϕ〉rε |

p
dµε ≤ C

εp

h
(
rε
ε

) ∑
z∈Iε

ˆ L

0

ˆ
Qzε

|∇ϕ|p dx ≤ C

γ
(p)
ε (rε)

ˆ
O
|∇ϕ|pdx,

hence the second line of (4.4) is proved. The third one is obtained in the same way and the fourth one
is straightforward. The fifth one is easily derived by choosing (R,α) = (rε, 1) in (4.35).
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5 Proof of the main result

The demonstration of Theorem 2.1 is based on the Γ-convergence method (for precise details about this
method, we refer the reader to [2], [3], [12]). The ”lowerbound” and the ”upperbound” stated respectively
in Proposition 5.1 and Proposition 5.2, indicate in particular that the sequence of functionals (Fε) Γ-
converges with respect to the strong topology of Lp(O) to the functional Fhom defined by (2.13). The
proof of Theorem 2.1 is deduced in the following manner from the two last mentioned propositions and
from Proposition 4.1:

5.1 Proof of Theorem 2.1.

We will only prove Theorem (2.1) in the most interesting case

γ(p) > 0. (5.1)

Let (uε) be the sequence of the solutions to (1.1). By (1.8), and since u0 is continous on O (see (1.1)),
there holds Fε(uε)−

´
O qBuεdx−

´
Γ1
qsuεdH2 ≤ Fε(u0)−

´
O qBu0dx−

´
Γ1
qsu0dH2 ≤ C. As

∣∣ ´
O qBuεdx+´

Γ1
qsuεdH2

∣∣p ≤ CFε(uε), we deduce that (uε) satisfies (4.1). Therefore, we can apply Proposition 4.1
and, after possibly extracting a subsequence, assume that (uε) converges weakly in W 1,p(O) to some u,
and that the sequence (uεµε) weak ∗ converges in Mb(O) to vL3

bO for some v ∈ Vp. We just have to
prove that (u, v) is the solution to (2.12). To that aim, we first apply Proposition 5.1, to get

lim inf
ε→0

Fε(uε)−
ˆ
O
qBuεdx−

ˆ
Γ1

qsuεdH2 ≥ Φ(u, v)−
ˆ
O
qBudx−

ˆ
Γ1

qsudH2. (5.2)

By Proposition 5.2, there exists a sequence (ϕε) such that,

ϕε ⇀ u strongly in Lp(O), ϕεµε
?
⇀ vnL3

bO weak ∗ in Mb(O), lim sup
ε→0

Fε(ϕε) ≤ Φ(u, v). (5.3)

Since uε is the solution to (1.1), there holds

Fε(uε)−
ˆ
O
qBuεdx−

ˆ
Γ1

qsuεdH2 ≤ Fε(ϕε)−
ˆ
O
qBϕεdx−

ˆ
Γ1

qsϕεdH2. (5.4)

We infer fom (5.2), (5.3), (5.4) and from the weak continuity on W 1,p(O) of the linear form ϕ →´
O qBϕdx−

´
Γ1
qsϕdH2 that

Φ(u, v)−
ˆ
O
qBudx−

ˆ
Γ1

qsudH2 ≤ min(Phom),

hence (u, v) is the unique solution to (Phom) (the uniqueness results from the strict convexity of f and
g).

5.2 Lower bound

The result stated in the next proposition in the case p = 2, 0 < γ(2) < +∞ concern only the subse-
quences (uεk), (Fεk), ... corresponding to the assumption (2.8). However, for notational simplicity, such
subsequences will still denoted by (uε), (Fε), ....

Proposition 5.1. Under the assumptions of Theorem 2.1, for all (u, v) ∈ (u0 +W 1,p
Γ0

(O))× Vp and for
all sequence (uε) in u0 + W 1,p

Γ0
(O) which weakly converges in W 1,p(O) toward u and such that (uεµε)

weak ∗ converges in Mb(O) to vnL3
bO, we have

lim inf
ε→0

Fε(uε) ≥ Φ(u, v). (5.5)
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Proof. We can suppose that lim infε→0 Fε(uε) < +∞, otherwise there is nothing to prove. Accordingly,
after possibly extracting a subsequence, we can assume that (4.1) is verified and that the estimates (4.6)
and the convergences (4.7) established in Proposition 4.1 take place. We choose a suitable sequence
(Rε) of positive reals satisfying (2.6) (the choice of (Rε) will be made more precise in Lemma 7.2), and
establish (see below) that

lim inf
ε→0

ˆ
O\(DRε×(0,L))

f(∇uε) dx ≥
ˆ
O
f(∇u) dx, (5.6)

lim inf
ε→0

λε

ˆ
Trε

g(∇uε) dx ≥ k̄
ˆ
O
ghom(∂3v) ndx, (5.7)

lim inf
ε→0

ˆ
(DRε×(0,L))\Trε

f(∇uε) dx ≥
ˆ
O
cf (S; v − u) ndx otherwise, (5.8)

where ghom and cf are defined by (2.4) and (2.8). Collecting (5.6), (5.7), (5.8) we obtain (5.5) which,
joined with (4.7), achieves the proof of Proposition 5.1.
Proof of (5.6). By (2.6) and (4.3) we have |DRε × (0, L)| → 0, therefore the sequence

(
1O\(DRε×(0,L))∇uε

)
weakly converges in Lp(O; R3) toward ∇u. Assertion (5.6) then follows from the lower semi-continuity
of q 7→

´
O f(q) dx.

Proof of (5.7). If k̄ < +∞, by (1.10), (2.4), (4.7) and Lemma 4.2, we have:

lim inf
ε→0

λε

ˆ
Trε

g(∇uε) dx ≥ lim inf
ε→0

λε
r2
ε |S|
ε2

ˆ
ghom(∂3uε) dµε

≥ k̄

ˆ
O
ghom(∂3v) ndx.

Otherwise, if k̄ = +∞, it is enough to notice that λε
´
Trε

g(∇uε) dx is bounded from below by 0.

Proof of (5.8). If γ(p) = +∞ (in particular if p > 2), there is nothing to prove because then, by
Proposition 4.1, v = u. From now on, we assume that 0 < γ(p) < +∞ (hence p ≤ 2). First, we show (see
Lemma 7.1) that there exists an approximation (Êuε) of uε piecewise constant in x3 satisfying

λε

ˆ
Trε

|“∇Êuε|p dx ≤ λε ˆ
Trε

|∇uε|p dx,
ˆ
O
|“∇Êuε|p dx ≤ ˆ

O
|∇uε|p dx, “∇Êuε := (∂1Êuε, ∂2Êuε, 0)

ˆ
|〈Êuε〉rε |p + |〈Êuε〉Rε |pdµε ≤ C,

〈Êuε〉rεµε ?
⇀ nvL3

bO, 〈Êuε〉Rεµε ?
⇀ nuL3

bO weak ∗ in Mb(O),

lim inf
ε→0

ˆ
(DRε×(0,L))\Trε

f(∇uε) dx ≥ lim inf
ε→0

ˆ
(DRε×(0,L))\Trε

f∞,p(“∇Êuε, 0) dx.

(5.9)

Next, we fix a positive real δ satisfying
1 < δ < 2, (5.10)

and define the set S−r
δ
ε

rε by setting (U,α) = (Srε , r
δ
ε) in

U−α := {x̂ ∈ U, dist (x, ∂U) > α} ,
U+α :=

{
x̂ ∈ R2, dist (x, ∂U) < α

}
∪ U.

(5.11)

Notice that by (1.7) we have, for small ε small enough (see (4.3)),

Dj
rε ⊂ S

j,−rδε
rε ∀ j ∈ Jε. (5.12)
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We prove (see Lemma 7.3) that for a suitable choice of the sequence (Rε) satisfying (2.6) (the choice of
this sequence is determined by Lemma 7.2), there exists an approximation Ûuε of Êuε verifying

ˆ
(DRε×(0,L))\Trε

f∞,p(“∇Êuε, 0) dx ≥
ˆ

(DRε×(0,L))\(S−r
δ
ε

rε ×(0,L)

f∞,p(“∇Ûuε, 0) dx+ o(1),Ûuε = 〈Ûuε〉rε = 〈Êuε〉rε on ∂S
−rδε
rε × (0, L), Ûuε = 〈Ûuε〉Rε = 〈Êuε〉Rε on ∂DRε × (0, L),

(5.13)

The properties of Ûuε allow us to make good use of the capacitary problem (2.5). More precisely, let us
denote by 〈Êuε〉jrε(x3) (resp. 〈Êuε〉jRε(x3)) the constant value taken by the function 〈Êuε〉rε (resp. 〈Êuε〉Rε)
on the set Dj

Rε
× {x3} (see (4.2)). By (5.13), for each (j, x3) ∈ Jε × (0, L), the function Ûuε is equal to

〈Êuε〉jRε(x3) on the set ∂Dj
Rε
× {x3} and to 〈Êuε〉jrε(x3) ∂Sj,−r

δ
ε

rε × {x3} (see (5.11)). Therefore there holds,
for all j ∈ Jε and for a.e. x3 ∈ (0, L) (see (2.5))

ˆ
Dj
Rε
\Sj,−r

δ
ε

rε

f∞,p(“∇Ûuε, 0)(x) dx̂ ≥ capf
∞,p(

S
j,−rδε
rε , Dj

Rε
; 〈Êuε〉jrε(x3)− 〈Êuε〉jRε(x3)

)
.

We deduce that

ˆ
(DRε×(0,L))\S−r

δ
ε

rε ×(0,L)

f∞,p(“∇Ûuε, 0) dx ≥
ˆ L

0

( ∑
j∈Jε

ˆ
Dj
Rε
\Sj,−r

δ
ε

rε

f∞,p(“∇Ûuε, 0) dx̂
)
dx3

≥
ˆ L

0

( ∑
j∈Jε

capf
∞,p(

S
j,−rδε
rε , Dj

Rε
; 〈Êuε〉jrε − 〈Êuε〉jRε)) dx3.

(5.14)

Because f∞,p is p positively homogeneous, we can apply (6.10) and, for each (j, x3) ∈ Jε × (0, L), obtain
(see (2.5), (5.11))

capf
∞,p(

S
j,−rδε
rε ,Dj

Rε
; 〈Êuε〉jrε − 〈Êuε〉jRε) = r2−p

ε capf
∞,p(

S−r
δ−1
ε , (Rε/rε)D; 〈Êuε〉jrε − 〈Êuε〉jRε)

=
r2−p
ε

ε2

ε2

r2
ε |S|

ˆ
Sjrε

capf
∞,p(

S−r
δ−1
ε , (Rε/rε)D; 〈Êuε〉jrε − 〈Êuε〉jRε)dx̂. (5.15)

Let us fix a bounded Lipschitz domain S′ such that

S
′ ⊂ S. (5.16)

For small ε’s, there holds S
′ ⊂ S−rδ−1

ε , therefore by (2.3), (5.14), (5.15), and (6.8), we have

ˆ
(DRε×(0,L))\S−r

δ
ε

rε ×(0,L)

f∞,p(“∇Ûuε, 0) dx ≥ r2−p
ε

ε2

ˆ
capf

∞,p(
S′, (Rε/rε)D; 〈Êuε〉rε − 〈Êuε〉Rε)dµε. (5.17)

We then distinguish two cases.
Case p < 2. Collecting (2.1), (5.9), (5.13), (5.17), and (6.5), we deduce that

lim inf
ε→0

ˆ
(DRε×(0,L))\Trε

f(∇uε) dx ≥ γ(p)lim inf
ε→0

ˆ
O

capf
∞,p(

S′,R2; 〈Êuε〉rε − 〈Êuε〉Rε) dµε.
By applying Lemma 4.2 (ii) to the convex function j(.) = capf

∞,p(
S,R2; ·

)
which, for p < 2, has a growth

of order p (see Proposition 6.1 (i) and (6.10), (6.12)), taking (4.7) and (4.11) into account, we infer

lim inf
ε→0

ˆ
(DRε×(0,L))\Trε

f(∇uε) dx ≥ γ(p)

ˆ
O

capf
∞,p(

S′,R2; v − u
)
ndx, (5.18)
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for all Lipschitz domain S′ satisfying (5.16). Fixing an increasing sequence (Sn)n∈N of Lipschitz domains
such that Sn ⊂ S and

⋃
n∈N Sn = S, substituting Sn for S′ in (5.18) and passing to the limit as n→ +∞,

thanks to (6.8), (6.9) and to the Monotone Convergence Theorem, we get (5.8).
Case p = 2. In this case, we fix two positive reals r,R such that

rD ⊂ S ⊂ RD, (5.19)

and specify the choice of S′ by setting
S′ := rD. (5.20)

By (5.19), (7.13), (6.5), (6.8), and (6.10), we have

capf
∞,2

(rεS′, RεD;±1) = capf
∞,2

(rεrD,RεD;±1) = capf
∞,2
Å
rεRD,Rε

R

r
D;±1

ã
≥ capf

∞,2
(rεS,R′εD;±1) .

(5.21)

We deduce from (2.7), (2.8), (5.21), and (6.13) that

lim inf
ε→0

capf
∞,2

(rεS′, RεD;±1)
ε2

≥ γ(2)cf
∞,2

(±1). (5.22)

By (5.17) and (6.10), there holds

ˆ
(DRε×(0,L))\S−r

δ
ε

rε ×(0,L)

f∞,p(“∇Ûuε, 0) dx =
capf

∞,2(
rεS
′, RεD; 1

)
)

ε2

ˆ
|(〈Êuε〉rε − 〈Êuε〉Rε)+|2dµε

+
capf

∞,2(
rεS
′, RεD;−1

)
)

ε2

ˆ
|(〈Êuε〉rε − 〈Êuε〉Rε)−|2dµε. (5.23)

Joining Lemma 4.2 (see (4.5)), (5.13), (5.17), (5.22), (5.23), and (6.5), we get (5.8).

5.3 Upper bound

As above, the result stated below in the case p = 2, 0 < γ(2) < +∞ are obtained for subsequences (aεk)
corresponding to the assumption (2.8) which are still denoted by (aε).

Proposition 5.2. Under the assumptions of Theorem 2.1, for all (u, v) ∈ W 1,p
Γ0

(O)× Vp, there exists a
sequence (uε) such that

uε ⇀ u strongly in Lp(O), uεµε
?
⇀ vnL3

bO weak ∗ in Mb(O),

lim sup
ε→0

Fε(uε) ≤ Φ(u, v).
(5.24)

Proof. By density and diagonalization arguments, (see [5, pp. 424–429] for more details), we are reduced
to prove that for all (u, v) ∈ (C1(O))2 such that

Φ(u, v) < +∞, (5.25)

there exists a sequence (uε) in W 1,p(O) (thanks to the truncature argument employed in [5, p. 428], we
can forget the boundary constraint on Γ0) such that

uε ⇀ u strongly in Lp(O), uεµε
?
⇀ vnL3

bO weak ∗ in Mb(O),

lim sup
ε→0

ˆ
O\Trε

f(∇uε)dx+ λε

ˆ
Trε

g(∇uε)dx ≤ Φ(u, v).
(5.26)
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Accordingly, let us fix (u, v) ∈ (C1(O))2 satisfying (5.25). By (1.9), (2.4) and the strict convexity of g,
there exists a unique field ϕ ∈ C(O; R2) such that

g(ϕ1(x), ϕ2(x), ∂3v(x)) = ghom(∂3v(x)) ∀x ∈ O. (5.27)

If p 6= 2, we fix any sequence (Rε) satisfying (2.6). If p = 2, we set

Rε := R′ε. (5.28)

We denote by θε : “O → R the unique solution to the problem

min
ßˆ
Ô
f∞,p(“∇θ(x̂), 0) dx̂, θ ∈W 1,p(“O), θ = 1 in Srε , θ = 0 in “O \DRε

™
.

Since f∞,p is p-positively homogeneous, by (2.5) and (6.10) there holds, for all j ∈ Jε and α ∈ R,
ˆ
Dj
Rε

f∞,p(α“∇θε, 0) dx̂ = capf
∞,p Ä

Sjrε , D
j
Rε

;α
ä

= capf
∞,p

(rεS,RεD;α)

= r2−p
ε capf

∞,p
(S,Rε/rεD; sgn(α)) |α|p.

(5.29)

We set

uε(x) = θε(x̂)χε(x) + (1− θε(x̂))u(x), (5.30)

where

χε(x) =
∑
j∈Jε

Ç 
Sjrε

v(x̂, x3) dx̂+

Ç 
Sjrε

ϕ(x̂, x3) dx̂

å
.(x̂− ωjε)

å
1Dj

Rε

(x̂). (5.31)

It is easy to check that the convergences stated in (5.26) hold true. We have
ˆ
O\Trε

f(∇uε)dx+ λε

ˆ
Trε

g(∇uε)dx := Iε1 + Iε2 + Iε3;

Iε1 =
ˆ
O\(DRε×(0,L))

f(∇u)dx,

Iε2 =
ˆ

(DRε×(0,L))\Srε×(0,L)

f
Ä
((χε − u)“∇θε, 0) + (1− θε)∇u+ θε∇χε

ä
dx,

Iε3 = λε

ˆ
Trε

g
(
∇χε

)
dx.

(5.32)

The proof of (5.26) is achieved provided we show that

lim sup
ε→0

Iε1 ≤
ˆ
O
f(∇u)dx, (5.33)

lim sup
ε→0

Iε2 ≤
ˆ
O
cf (S; v − u)ndx, (5.34)

lim
ε→0

Iε3 ≤ k
ˆ
O
ghom(∂3v)ndx. (5.35)

The proof of (5.33) is straightforward.
Proofs of (5.34). Assuming first that γ(p) < +∞ (hence p ≤ 2 and (θε) is bounded in W 1,p(“O)) and
applying (7.16) to (h,A) = (f,DRε × (0, L) \ Srε × (0, L)), noticing that by (1.5) there holds |DRε | ≤
C
r2
ε

ε2 = o(1) and |θε| ≤ 1 (see (6.4)), we get∣∣∣∣∣Iε2 −
ˆ

(DRε×(0,L))\Srε×(0,L)

f
Ä
((χε − u)“∇θε, 0)

ä
dx

∣∣∣∣∣ = o(1), (5.36)
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and then deduce from (7.8) that∣∣∣∣∣Iε2 −
ˆ

(DRε×(0,L))\Srε×(0,L)

f∞,p
(
((χε − u)“∇θε, 0)

)
dx

∣∣∣∣∣ = o(1). (5.37)

It follows from (7.16), (5.37) and the estimate (see (5.31))

|(χε − u)(x)− (v − u)(ωjε, x3)| ≤ CRε in Dj
Rε
× (0, L), ∀j ∈ Jε,

that ∣∣∣∣∣∣Iε2 −∑j∈Jε
ˆ

(Dj
Rε
×(0,L))\Srε×(0,L)

f∞,p((v − u)(ωjε, x3)“∇θε, 0) dx

∣∣∣∣∣∣ = o(1). (5.38)

By (2.3), (5.29) and (6.10), there holds

∑
j∈Jε

ˆ
(Dj

Rε
×(0,L))\Sjrε×(0,L)

f∞,p((v − u)(ωjε, x3)“∇θε, 0)dx =
∑
j∈Jε

ˆ L

0

capf
∞,p(

Srε , RεD; (v − u)(ωjε, x3)
)
dx3

=
r2−p
ε

ε2

ˆ
capf

∞,p(
S,Rε/rεD; ζε(x)

)
dµε,

(5.39)

where

ζε(x) :=
∑
j∈Jε

(v − u)(ωjε, x3)1Dj
Rε

(x̂). (5.40)

We distinguish then two cases.
Case p < 2. Let us fix some bounded open subset V of R2 such that S ⊂ V . For small ε’s there holds
V ⊂ Rε/rεD, hence by (6.5) capf

∞,p(
S,Rε/rεD; ζε(x)

)
≤ capf

∞,p(
S, V ; ζε(x)

)
, therefore by (2.1), (5.38)

and (5.39) we have, since 0 < γ(p) < +∞,

lim sup
ε→0

Iε2 ≤ γ(p) lim sup
ε→0

ˆ
capf

∞,p(
S, V ; ζε(x)

)
dµε. (5.41)

By Proposition 6.1 (i), the application capf
∞,p(

S, V ; .
)

is locally Lipschitz continuous and by (5.40) the
estimate |ζε − (v − u)| ≤ Cε holds true in DRε × (0, L), because v − u is continous. We deduce that
capf

∞,p(
S, V ; ζε(x)

)
− capf

∞,p(
S, V ; v − u

)
≤ Cε in DRε and then infer from (4.11) and (5.41) that

lim sup
ε→0

Iε2 ≤ γ(p)

ˆ
O

capf
∞,p(

S, V ; v − u
)
ndx. (5.42)

Substituting Vn for V in (5.42), where (Vn) denotes an increasing sequence of bounded open subsets of
R2 such that S ⊂ V1 and

⋃
n∈N Vn = R2, noticing that by (6.5) and (6.6) there holds capf

∞,p(
S, Vn; v −

u
)
≤ capf

∞,p(
S, V1; v − u

)
and limn→+∞ capf

∞,p(
S, Vn; v − u

)
= capf

∞,p(
S,R2; v − u

)
, by applying the

Dominated Convergence Theorem, we get

lim sup
ε→0

Iε2 ≤ γ(p) lim
n→+∞

ˆ
O

capf
∞,p(

S, Vn; v − u
)
ndx = γ(p)

ˆ
O

capf
∞,p(

S,R2; v − u
)
ndx

=
ˆ
O
cf (S; v − u) ndx. (p < 2)

(5.43)

The proof of (5.34) is achieved in the case 0 < γ(p) < +∞.

19



Case p = 2. By (5.39) and by the second line of (6.10), we have

∑
j∈Jε

ˆ
(Dj

Rε
×(0,L))\Sjrε×(0,L)

f∞,p((v − u)(ωjε, x3)“∇θε, 0) dx

=
capf

∞,2(
rεS,RεD; 1

)
ε2

∑
j∈Jε

ˆ
|ζε|21ζε>0dµε

+
capf

∞,2(
rεS,RεD;−1

)
ε2

∑
j∈Jε

ˆ
|ζε|21ζε<0dµε.

(5.44)

By (2.7), (2.11), and (5.28), there holds

lim
ε→0

capf
∞,2(

rεS,RεD;±1
)

ε2
= γ(2)cf

∞,2
(±1). (5.45)

By (5.40), the next estimates are satisfied

||ζε|21ζε>0 − |v − u|21v−u>0| ≤ Cε in DRε × (0, L),

||ζε|21ζε<0 − |v − u|21v−u<0| ≤ Cε in DRε × (0, L).
(5.46)

We deduce from (2.9), (2.11), (4.11), (5.38), (5.45), (5.46), and (6.13) that

lim
ε→0

Iε2 = γ(2)cf
∞,2

(1)
ˆ
O
|v − u|21v−u>0ndx+ γ(2)cf

∞,2
(−1)

ˆ
O
|v − u|21v−u<0ndx

=
ˆ
O
cf (S, v − u) ndx. (p = 2)

The proof of (5.34) is achieved in the case p = 2, 0 < γ(2) < +∞.
If γ(p) = +∞, we choose a sequence (Rε) satisfying, besides (2.6), the estimate

Rpεγ
(p)
ε (rε) << 1. (5.47)

By (5.25) there holds u = v and by (5.31) we have |χε−u| < CRε in DRε . Taking (1.9) into account, we
infer that f

∣∣∣∣∣
ˆ

(DRε×(0,L))\Srε×(0,L)

f
Ä
((χε − u)“∇θε, 0)

ä
dx

∣∣∣∣∣ =≤ CRpε
ˆ
O
|“∇θε|pdx ≤ CRpεγ(p)

ε (rε). (5.48)

It follows then from (5.36), (5.48), and (5.47) that limε→0 Iε2 = 0.
Proof of (5.35). If k̄ < +∞, noticing that by (5.31) there holds |∇χε − (ϕ1, ϕ2, ∂3v)| ≤ crε in Trε , we
deduce from (1.10), (4.11), and (5.27) that

lim sup
ε→0

λε

ˆ
Trε

g(∇χε) dx = lim sup
ε→0

λε
r2
ε |S|
ε2

ˆ
g(ϕ, ∂3v) dµε = k̄

ˆ
O
g(ϕ, ∂3v)ndx

= k̄

ˆ
O
ghom(∂3v) ndx.

Otherwise, if k̄ = +∞, then by (5.25) we have ∂3v = 0, therefore ϕ = 0 (because by (1.9) there holds
g(0) = 0) and χε = 0. Accordingly, Iε3 = 0 and (5.35) is proved.
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6 Some properties of f-capacities

Our main objective in this section is to analyze the behavior of the application capf defined by (2.5) with
respect to certain small subsets of R2. This analyzis reveals striking differences depending on the rate
of growth p of the function f . These disparities originate mainly in the fact that Gagliardo-Nirenberg-
Sobolev inequality in R2 [8, Theorem 9.9], namely

ˆ
R2
|f |p

∗
dx ≤ C

ˆ
R2
|∇f |pdx ∀f ∈W 1,p(R2) p∗ :=

Np

N − p
, (6.1)

fails to hold for p ≥ 2. If 1 ≤ p < 2, then by (7.10), for any open subset V of R2, the application

ϕ →
(´
V
|∇ϕ|pdx

) 1
p is a norm on W 1,p

0 (V ). If 1 < p < N , the completion of W 1,p
0 (V ) with respect to

this norm is the reflexive Banach space defined by

Kp
0 (V ) :=

¶
f ∈ Lp

∗
(R2), ∇f ∈ Lp(R2)

©
. (6.2)

The space Kp
0 (V ) is equal to W 1,p

0 (V ) if V is bounded and may be strictly larger otherwise. If 1 < p < 2
and if U is bounded, the infimum problem (2.5) is achieved in the space Kp

0 (V ) for whatever choice of
V , whereas if 2 ≤ p, it is not achieved in any Banach space of functions if V = R2 (nor, in general, if
V is unbounded). This lack of solution, similar to the Stoke’s paradox in fluid mechanics [19], marks a
fundamental difference between the cases 1 < p < 2 and 2 ≤ p.

A series of properties of the application capf is collected in the next proposition. Further results
concerning f -capacities and many references on this subject may be found for instance in [16].

Proposition 6.1. Let f : R → R be a strictly convex mapping satisfying the growth condition (1.9) for
some p ∈ (1,+∞), let S be a bounded connected Lipschitz open subset of R2, and let V be an open subset
of R2 such that 0 ∈ S ⊂ S ⊂ V . Then,
(i) The application α ∈ R→ capf (S, V ;α) is convex.
(ii) If 1 < p < 2, then

capf (S, V ;α) :=min

{ˆ
V

f(“∇ψ)dx, ψ ∈ Kp
0 (V ), ψ = α in S

}
. (6.3)

Moreover, the solution ψ to (6.3) is unique and satisfies, for a.e. x ∈ O,

0 ≤ ψ(x) ≤ α if α ≥ 0; 0 ≥ ψ(x) ≥ α if α ≤ 0. (6.4)

(iii) Let V1, V2 be two open subsets of R2. Then

S ⊂ V1 ⊂ V2 ⇒ capf (S, V1;α) ≥ capf (S, V2;α) ∀α ∈ R. (6.5)

Moreover, if (Vn) is an increasing sequence of open subsets of R2 such that S ⊂ V1 and
⋃+∞
n=1 Vn = V ,

then

lim
n→+∞

capf (S, Vn;α) = capf (S, V ;α) ∀α ∈ R. (6.6)

Furthermore, there holds

lim
λ→0

capf
Å
S;

1
λ
V ;α
ã

= capf
(
S; R2;α

)
. (6.7)

Assume in addition that 1 < p < 2 or that V is bounded, and let ψn be the solution to the problem deduced
from (6.3) by substituting Vn for V . Then the sequence (ψn), where ψn is extended to V by setting ψn = 0
in V \ Vn, converges weakly in Kp

0 (V ) to the unique solution to (6.3).
(iv) Let S1 and S2 be two bounded open subsets of R2 such that S1 ⊂ S2 ⊂ S2 ⊂ V . Then

capf (S1, V ;α) ≤ capf (S2, V ;α) ∀α ∈ R. (6.8)
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If p < 2 and if (Sn) is an increasing sequence of bounded open subsets of R2 such that
⋃+∞
n=1 Sn = S, then

lim
n→+∞

capf (Sn, V ;α) = capf (S, V ;α) ∀α ∈ R. (6.9)

(v) Assume that f is p-positively homogeneous and let λ > 0, α ∈ R. Then

capf (λS, V ;α) = λ2−pcapf
Å
S,

1
λ
V ;α
ã

if λS ⊂ V,

capf (S, V ;α) = |α|pcapf (S, V ; sgn(α)).
(6.10)

(vi) There holds

cap
1
p |·|

p(
rεD,RεD; a

)
=


2π
p

( s

Rsε − rsε

)p−1

|a|p, s =
p− 2
p− 1

if p 6= 2,

π
ln(Rε/rε)

a2 if p = 2.

(6.11)

(vii) We have

capf (S,R2;α) > 0 ∀α ∈ R \ {0} if 1 < p < 2,

capf (S,R2;α) = 0 ∀α ∈ R if 2 ≤ p < +∞.
(6.12)

(viii) Let (rε) and (Rε) be two sequences of positive reals such that rε << Rε << ε. Then

lim
ε→0

1
ε2

capf (rεS,RεD;α) = lim
ε→0

1
ε2

capf
∞,2

(rεS,RεD;α), (6.13)

provided one of these limits exists. Moreover,

lim
ε→0

1
ε2

capf
∞,p

(rεS,RεD;α) = γ(p)capf
∞,p

(S,R2;α) if 1 < p < 2,

lim
ε→0

1
ε2

capf
∞,p

(rεS,RεD;α) = +∞ if 2 < p < +∞,
(6.14)

where γ(p) is defined by (2.1).
(ix) Assume that p = 2 and let cf

∞,2
(±1) be defined by (2.8), (2.11). Then for all sequence (Rε) satisfying

(2.6) and for all bounded domain S′ of R2, there holds

lim
k→+∞

capf
∞,p

(rεkS
′, RεkD;±1)

εk2
= γ(2)cf

∞,2
(±1) (6.15)

Proof. (i) Let (α, α′) ∈ R2, λ ∈ (0, 1), t > 0 and η ∈ D(V ) (resp. η′ ∈ D(V )) satisfying the boundary
condition associated with the problem capf (S, V ;α) (resp. capf (S, V ;α′)) and such that

ˆ
V

f(“∇η)dx ≤ capf (S, V ;α) + t

Å
resp.

ˆ
V

f(“∇η′)dx ≤ capf (S, V ;α′) + t

ã
.

Then λη+(1−λ)η′ satisfies the boundary condition associated with the problem capf (S, V ;λα+(1−λ)α′)
and

capf (S, V ;λα+ (1− λ)α′) ≤
ˆ
V

f(“∇(λη + (1− λ)η′))dx

≤ λ
ˆ
V

f(“∇η)dx+ (1− λ)
ˆ
V

f(“∇η′)dx
≤ λcapf (S, V ;α) + (1− λ)capf (S, V ;α′) + t.
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(ii) If 1 < p < 2 or if V is bounded, by the density of D(V ) in Kp
0 (V ) and the strong continuity on

Kp
0 (V ) of the application ψ →

´
V
f(“∇ψ)dx, we have

capf (S, V ;α) = inf

{ˆ
V

f(“∇ψ)dx, ψ ∈ Kp
0 (V ), ψ = α in S

}
. (6.16)

Let (ψε) be a sequence of minimizers of (6.16). By (1.9) and Korn inequality, we can assume that supε>0´
V
|∇ψε|pdx < +∞ hence, if 1 < p < 2 or if V is bounded, then (ψε) is bounded in the reflexive Banach

space Kp
0 (V ) and converges weakly, up to a subsequence, to some ψ ∈ Kp

0 (V ). It is easy to check that
ψ = α in S. The application ψ →

´
V
f(“∇ψ)dx being convex and strongly continuous on Kp

0 (V ), it is also
weakly lower semi-continuous, therefore

capf (S, V ;α) = lim
ε→0

ˆ
V

f(“∇ψε)dx ≥ ˆ
V

f(“∇ψ)dx ≥ capf (S, V ;α).

Therefore the infimum problem (6.16) is achieved. The uniqueness of its solution results from the strict
convexity of f . Assertion (6.4) follows from the last mentioned uniqueness and from the following property
if α > 0

ˆ
V

f((ψ ∨ 0) ∧ α)dx ≤
ˆ
V

f(ψ)dx ∀ψ ∈ K0(V ),

and from a similar one if α < 0.

(iii) The assertion (6.5) is straightforward. To prove (6.6), we fix t > 0, ψ ∈ D(V ) such that ψ = α

in S and
´
V
f(“∇ψ)dx ≤ capf (S, V ;α) + t and n0 ∈ N such that sptψ ⊂ Vn0 . We have capf (S, Vn;α)

≤
´
V
f(“∇ψ)dx ∀n ≥ n0, hence

capf (S, V ;α) ≤ lim inf
n→+∞

capf (S, Vn;α)

≤ lim sup
n→+∞

capf (S, Vn;α) ≤ capf (S, V ;α) + t.

Assertion (6.6) is proved.
Since 0 ∈ V , we can assume without loss of generality thatD ⊂ V . By (6.6) we have limλ→0 capf

(
S, 1

λD;α
)

= capf (S,R2;α). By passing to the limit as λ → 0 in the first and third terms of the double inequality
capf (S,R2;α)≤capf (S, 1

λV ;α) ≤ capf (S, 1
λD;α) we obtain (6.7).

If 1 < p < 2, then by (1.9) and (6.6) we have

|ψn|pKp
0 (V )

≤ Ccapf (S, Vn;α) ≤ C(capf (S, V ;α) + 1) < +∞,

hence the sequence (ψn) is bounded in Kp
0 (V ) and converges weakly, up to a subsequence, to some

ψ ∈ Kp
0 (V ). Taking (6.6) into account, we deduce that

capf (S, V ;α) ≥ lim
n→+∞

capf (S, Vn;α) = lim
n→+∞

ˆ
V

f(“∇ψn)dx

≥
ˆ
V

f(“∇ψ)dx ≥ capf (S, V ;α).

(iv) The assertion (6.8) is straightforward. Let us denote by ψn the unique solution to the problem
deduced from (6.3) by substituting Sn for S. Then (ψn) is bounded in the reflexive Banach space Kp

0 (V )
and converges weakly, up to a subsequence, to some ψ ∈ Kp

0 (V ). It is easy to check that ψ = α a.e. in
S, therefore by the lower weak semicontinuity of the application ϕ→

´
V
f(∇ϕ)dx, we get

lim inf
n→+∞

capf (Sn, V ;α) = lim inf
ε→0

ˆ
V

f(∇ψn)dx ≥
ˆ
V

f(∇ψ)dx ≥ capf (S, V ;α). (6.17)

Conversely, by (6.8) we have lim supn→+∞ capf (Sn, V ;α) ≤ capf (S, V ;α). Assertion (6.9) is proved.
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(v) Let us fix t > 0 and let ψ ∈ D(V ) satisfying the boundary conditions associated with capf (λS, V ;α)
such that capf (λS, V ;α)+t ≥

´
V
f(“∇ψ))dx. Then the field ϕ ∈ D

(
1
λV
)

defined by setting ϕ(y) := ψ(λy)
satisfies ϕ = α in S and “∇ϕ(y) = λ“∇ψ(λy), therefore by the change of variables formula, since f is
assumed to be p-positively homogeneous, we have

capf (λS, V ;α) + t ≥
ˆ
V

f(“∇ψ)dx = λ2

ˆ
1
λV

f(“∇ψ)(λy)dy

= λ2−p
ˆ

1
λV

f(“∇ϕ)(y)dy ≥ λ2−pcapf
Å
S,

1
λ
V ;α
ã
.

By the arbitrary choice of λ, S, V , the first line of (6.10) is proved.

(vi) The solution to the problem associated with cap
1
p |·|

p(
rεD,RεD; a

)
is radial, hence can be easily

computed by solving an elementary one dimensional problem, yielding (6.11) (see [5, p. 432]).
(vii) If 1 < p < 2, then by (6.3) there exists a solution ψ ∈ Kp

0 (V ) to the problem associated with
capf (S,R2;α). This function ψ is not equal to zero, because ψ = α in S, hence by (1.9) there holds
capf (S,R2;α) =

´
V
f(∇ψ)dx ≥ C

´
V
|∇ψ|pdx > 0, because the application ϕ→

(´
V
|∇ϕ|pdx

)
is a norm

on Kp
0 (V ).

If p ≥ 2, fixing r > 0 such that S ⊂ rD, we deduce from (1.9), (6.7), (6.8), and (6.11) that

capf (S,R3;α) ≤ Ccap
1
p |.|

p

(S,R3;α) ≤ Ccap
1
p |.|

p

(rD,R3;α) = lim
R→+∞

Ccap
1
p |.|

p

(rD,RD;α) = 0.

(viii) By (1.9) and (6.11) there holds, for h ∈ {f, f∞,p},

Cγ(p)
ε (rε) ≥

C

ε2
cap|.|

p

(rεS,RεD;α) ≥ 1
ε2

caph(rεS,RεD;α) ≥ C

ε2
cap|.|

p

(rεS,RεD;α) ≥ Cγ(p)
ε (rε),

therefore if γ(p) ∈ {0,+∞} (and in particular if p > 2) there is nothing to prove.
Assume that 0 < γ(p) < +∞ and let ϕ denote the solution to the problem associated with capf (rεS,RεD;α)
(see (ii)). By (1.9) and (6.11), there holds

ˆ
RεD

|∇ϕ|pdx ≤ Ccapf (rεS,RεD;α) ≤ Ccap|.|
p

(rεS,RεD;α) ≤
®
Cr2−p

ε if p 6= 2,
C

| log rε| if p = 2.
(6.18)

By (2.10) we have

∆ε :=
1
ε2

capf
∞,p

(rεS,RεD;α)− 1
ε2

capf (rεS,RεD;α) ≤ 1
ε2

ˆ
RεD

f∞,p(∇ϕ)− f(∇ϕ)dx

≤ α′ 1
ε2

ˆ
RεD

(1 + |∇ϕ|β
′
)dx ≤ CR

2
ε

ε2
+ C

1
ε2

Åˆ
RεD

|∇ϕ|pdx
ã β′

p (
R2
ε

)1− β′p . (6.19)

We deduce from (6.18) and (6.19) that

∆ε ≤ C
R2
ε

ε2
+ C

1
ε2

(
r2−p
ε

) β′
p
(
R2
ε

)1− β′p ≤ CR2
ε

ε2
+ Cγε(rε)

(
R2
εr

2−p
ε

)1− β′p = o(1) if p < 2,

∆ε ≤ C
R2
ε

ε2
+ C

1

ε2 (| log(rε)|)
β′
p

(
R2
ε

)1− β′p ≤ CR2
ε

ε2
+ Cγε(rε)

(
R2
ε| log rε|

)1− β′p = o(1) if p = 2,

(because if p = 2 and 0 < γ(2) < +∞, then R2
ε| log rε| � ε2| log rε| = O(1)). In the same manner, we find

that 1
ε2 capf (rεS,RεD;α) − 1

ε2 capf
∞,p

(rεS,RεD;α) = o(1). The assertion (6.13) and the second line of
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(6.14) are proved. Since f∞,p is positively homogeneous of order p, we infer from (2.1), (6.6) and (6.10)
that

lim
ε→0

1
ε2

capf
∞,p

(rεS,RεD;α) = lim
ε→0

1
ε2

capf (rεS,RεD;α)

= lim
ε→0

r2−p
ε

ε2
capf (S,Rε/rεD;α) = γ(p)capf (S,R2;α).

The first line of (6.14) is proved.

(ix) First we assume that S = S′ and prove (6.15) by arguing by contradiction. Otherwise, there exists
a sequence (Rε) satisfying (2.6) and a subsequence (εkl) of (εk) such that

lim
l→+∞

Cεkl (Rεkl ,±1) = γ(2)c(±1), (6.20)

for some couple (c(1), c(−1)) different from (cf
∞,2

(1), cf
∞,2

(−1)). By substituting the assumption (6.20)
for the assumption (2.8) in propositions 5.1, 5.2, we obtain the assertions deduced from (5.5), (5.24) by
substituting εkl for ε and Φc for Φ, where Φc is deduced from Φ by replacing cf

∞,2
(±1) by c(±1) in

(2.11), (2.12). As Fεkl is extracted from Fεk , the same bounds are also satisfied with Φ in place of Φc.
We deduce that Φ = Φc, hence (c(1), c(−1)) = (cf

∞,2
(1), cf

∞,2
(−1)), yielding a contradiction.

If S′ 6= S, then by (1.7) there exists a couple of positive reals (r1, r2) such that r1S ⊂ S′ ⊂ r2S, so that
by (6.8) and (6.10), there holds

capf
∞,p

(rεkS,Rεk/r1D;±1)
εk2

≤ capf
∞,p

(rεkS
′, RεkD;±1)

εk2
≤ capf

∞,p
(rεkS,Rεk/r2D;±1)

εk2
. (6.21)

Then we pass to the limit as k → +∞ in the terms of the first and third terms of the double inequality
(6.21).

7 Appendix: some technical lemmas related to the lower bound

Lemma 7.1. Let (uε) be a sequence satisfying (4.1), (4.6) and (4.7). Then there exists a sequence (Êuε)
verifying (5.9).

Proof. We fix two sequences (aε) and (bε) of positive reals such that

1� aε � bε, aεb
2
ε �

R2
ε

ε2
. (7.1)

By means of De Giorgi’s slicing argument (see Remark 7.1), we can choose for each ε a finite sequence
(lk,ε)k∈{1,...,mε} such that 0 = l0,ε < l1,ε < · · · < lmε,ε < lmε+1,ε = L andÅ

k − 1
4

ã
aε ≤ lk,ε ≤

Å
k +

1
4

ã
aε, mε ∼

L

aε
,

ˆ
Hε

|∇uε|pdx ≤ C
bε
aε

ˆ
O
|∇uε|pdx (= o(1)),

ˆ
Hε

|〈uε〉rε |p + |〈uε〉Rε |pdµε ≤ C
bε
aε

ˆ
|〈uε〉rε |p + |〈uε〉Rε |pdµε (= o(1)),

Hε := DRε ×
mε⋃
k=1

Å
lk,ε −

1
2
bε; lk,ε +

1
2
bε

ã
∩ O.

(7.2)
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Then, given a sequence (ϕε) ⊂ D(0, L) such that

ϕε = 1 in (0, L) \
mε⋃
k=1

Å
lk,ε −

1
2
bε; lk,ε +

1
2
bε

ã
, ϕε = 0 on

mε+1⋃
k=0

{lk,ε},

0 ≤ ϕε ≤ 1, |ϕ′ε| <
C

bε
,

(7.3)

we set Êuε(x̂, x3) :=
mε+1∑
k=1

Ç 
(lk−1,ε;lk,ε)

ϕε(s3)uε(x̂, s3)ds3

å
1(lk−1,ε;lk,ε)(x3), (7.4)

and claim that the sequence (Êuε) defined by (7.4) satisfies (5.9).

By Jensen’s inequality we have, since 0 ≤ ϕε ≤ 1,

ˆ
Trε

|“∇Êuε|pdx =
mε+1∑
k=1

ˆ
Srε

ˆ
(lk−1,ε;lk,ε)

∣∣∣∣∣
 

(lk−1,ε;lk,ε)

ϕε(s3)“∇uε(x̂, s3)

∣∣∣∣∣
p

ds3dx

=
mε+1∑
k=1

ˆ
Srε

ˆ
(lk−1,ε;lk,ε)

 
(lk−1,ε;lk,ε)

∣∣∣“∇uε(x̂, s3)
∣∣∣p ds3dx ≤

ˆ
Trε

|∇uε|pdx,

which proves the first inequality of the first line of (5.9). The second one is obtained in the same way.

The second line of (5.9) is a consequence of (4.6) and (7.4). By applying Lemma 4.2, taking (4.11)
into account, we infer that the sequence of measures (〈Êuε〉rεµε) weak-∗ converges to wnL3

bO for some
w ∈ Lp(O). Hence we just have to prove that wn = vn L3

bO a.e.. To that aim, we first notice that, by
(7.2), the sequence (〈uε〉rε1Hεµε) weak-∗ converges to 0 in Mb(O). Since the support of (1− ϕε)〈uε〉rε
is included in Hε and 0 ≤ ϕε ≤ 1 (see (7.3)), we deduce from (4.7) that (ϕε〈uε〉rεµε) weak-∗ converges
in Mb(O) to vnL3

bO. Let us fix ψ ∈ C(O) and set

ψε(x) :=
mε+1∑
k=1

Ç 
(lk−1,ε;lk,ε)

ψ(x̂, s3)ds3

å
1(lk−1,ε;lk,ε)(x3). (7.5)

It is easy to check that |ψ−ψε|L∞(O) ≤ Caε << 1 (see (7.1), (7.2)), therefore by the two last mentioned
convergences, we have

lim
ε→0

ˆ
ψεϕε〈uε〉rεdµε =

ˆ
O
ψvndx, lim

ε→0

ˆ
ψε〈Êuε〉rεdµε =

ˆ
O
ψwndx. (7.6)

On the other hand there holds, by (2.3), (4.2), (7.4) and (7.5),

ˆ
ψεϕε〈uε〉rεdµε =

mε+1∑
k=1

ε2

r2
ε |S|

ˆ
Srε

dx̂

ˆ
(lk−1,ε;lk,ε)

Ç 
(lk−1,ε;lk,ε)

ψ(x̂, s3)ds3

å
ϕε〈uε〉rεdx3

=
mε+1∑
k=1

ε2

r2
ε |S|

ˆ
Srε

dx̂

ˆ
(lk−1,ε;lk,ε)

dx3

Ç 
(lk−1,ε;lk,ε)

ψ(x̂, s3)ds3

åÇ 
(lk−1,ε;lk,ε)

ϕε〈uε〉rεds3

å
=
ˆ
ψε〈Êuε〉rεdµε.

(7.7)

By the arbitrary choice of ψ, we deduce from (7.6) and (7.7) that nv = nw a.e. in O. The first convergence
of the third line of (5.9) is proved. The proof of the second one is similar.

By (2.10) and Hölder’s inequality, for any measurable subset A ⊂ R3, there holds∣∣∣∣ˆ
A

f∞,p(ϕ) dx−
ˆ
A

f(ϕ) dx
∣∣∣∣ ≤ α′ Å|A|+ |A|1− β′p |ϕ| β′pLp(A)

ã
∀ϕ ∈ Lp(A). (7.8)
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By (2.10) and (7.8), we have

lim inf
ε→0

ˆ
(DRε×(0,L))\Trε

f(∇uε) dx = lim inf
ε→0

ˆ
(DRε×(0,L))\Trε

f∞,p(∇uε) dx. (7.9)

By the continuous embedding of W 1,p(O) into Lp
∗
(O) (see [8, Corollary 9.14]), we haveÅˆ

O
|uε(x)|p

∗
dx

ã 1
p∗

≤ C|uε|W 1,p(O) ≤ C,
1
p∗

=
1
p
− 1

3
. (7.10)

Taking (1.9), (7.1), (7.2), (7.3), and (7.10) into account, applying Hölder’s inequality and noticing that
by (7.2) there holds |Hε| ≤ C R2

ε

ε2
bε
aε

, we deduce

ˆ
(DRε×(0,L))\Trε

|f∞,p(∇uε)− f∞,p(∇(ϕε(x3)uε(x)))|dx ≤
ˆ

Hε

|f∞,p(∇uε)|+ |f∞,p(∇(ϕε(x3)uε(x)))|dx

≤ C

ˆ
Hε

|∇uε|p +

∣∣∣∣uε(x)

bε

∣∣∣∣p dx ≤ C
bε

aε
+

C

bp
ε

Åˆ
Hε

|uε(x)|p
∗

dx

ã p
p∗

|Hε|
(
1− p

p∗
)

≤ C
bε

aε
+

C

bp
ε

Å
R2

ε

ε2

bε

aε

ã p
3

= C
bε

aε
+ C

Å
R2

ε

ε2

1

aεb2
ε

ã p
3

= o(1).

(7.11)

Since ϕε = 0 on
⋃mε+1
k=0 {lk,ε}, by applying Jensen’s inequality, we get (see (7.4))

ˆ
(DRε×(0,L))\Trε

f∞,p(∇(ϕε(x3)uε(x))) dx =
ˆ
DRε\Srε

dx̂

mε+1∑
k=1

ˆ
(lk−1,ε;lk,ε)

f∞,p(∇(ϕε(x3)uε(x))) dx3

≥
ˆ
DRε\Srε

dx̂

mε+1∑
k=1

(lk,ε − lk−1,ε)f∞,p
Ç 

(lk−1,ε;lk,ε)

∇(ϕε(x3)uε(x)) dx3

å
=
ˆ
DRε\Srε

dx̂

mε+1∑
k=1

(lk,ε − lk−1,ε)f∞,p
Ç“∇Ç 

(lk−1,ε;lk,ε)

ϕε(x3)uε(x) dx3

å
, 0

å
=
ˆ

(DRε×(0,L))\Trε
f∞,p(“∇Êuε, 0) dx.

(7.12)

The last line of (5.9) results from (7.9), (7.11) and (7.12).

The proof of the next Lemma relies on De Giorgi’s slicing argument (see Remark 7.1).

Lemma 7.2. Given a bounded sequence (uε) in W 1,p(O), there exists a sequence (Rε) satisfying (2.6)
and

lim sup
ε→0

ˆ
(DRε\DRε/2)×(0,L)

|∇uε|p dx = 0,

Rε ≤
R

r
R′ε if p = 2 and 0 < γ(2) < +∞ (see (5.19)).

(7.13)

Proof. We fix a sequence of positive real numbers (Qε) satisfying (see (2.1))

rε � Qε � ε, 1 << γ(p)
ε (Qε) (respectively, Qε � R′ε if p = 2 and 0 < γ(2) < +∞).

(set for instance Qε = εh with 1 < h < 2
2−p if p < 2) and a sequence of positive integers (qε) such that

limε→0 qε = +∞, rε � 2qεQε � ε (respectively, rε � 2qεQε � R′ε if p = 2 and 0 < γ(2) < +∞). For
each ε > 0, the family of sets (D2mQε \D2m−1Qε)m∈N,1≤m≤qε is disjoint, therefore

qε∑
m=1

ˆ
(D2mQε\D2m−1Qε

)×(0,L)

|∇uε|p dx ≤
ˆ
O
|∇uε|p dx ≤ C.
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Hence, for each ε > 0, there exists an integer mε such that 1 ≤ mε ≤ qε and
ˆ

(D2mεQε\D2mε−1Qε
)×(0,L)

|∇uε|p dx ≤
C

qε
.

The sequence (Rε) defined by Rε = 2mεQε satisfies (2.6) and (7.13).

Lemma 7.3. Assume that (Rε) satisfies (2.6) and (7.13). Then, there exists an approximation Ûuε of Êuε
verifying (5.13).

Proof. The sequence (Ûuε) will be defined as follows: we choose a sequence (Rε) satisfying (2.6) and (7.13),
fix ζε, ξε ∈ C∞(O) such that

ζε = 0 in DRε/2 × (0, L), ζε = 1 on ∂DRε × (0, L), |“∇ζε| ≤ C

Rε
,

ξε = 0 in (DRε \ Srε)× (0, L), ξε = 1 in S
−rδε
rε × (0, L), |“∇ξε| ≤ C

rδε
,

(7.14)

where S−r
δ
ε

rε :=
⋃
j∈Jε S

j,−rδε
rε (see (5.11)), and setÛuε := Êuε + ζε(〈Êuε〉Rε − Êuε) + ξε(〈Êuε〉rε − Êuε). (7.15)

Any convex function h on R3 verifying (1.9) satisfies (see [13, Proposition 2.32])

∃C > 0; |h(a)− h(b)| ≤ C|a− b|(1 + |a|p−1 + |b|p−1) ∀ a, b ∈ R3,

and by Hölder inequality, for all measurable set A ⊂ R3 and all ϕ, ϕ′ ∈ Lp(A), there holds∣∣∣∣ˆ
A

h(ϕ) dx−
ˆ
A

h(ϕ′) dx
∣∣∣∣ ≤ C|ϕ− ϕ′|Lp(A)

(
|A|

p−1
p + |ϕ|p−1

Lp(A) + |ϕ′|p−1
Lp(A)

)
. (7.16)

Applying (7.16) we infer∣∣∣∣∣
ˆ

(DRε×(0,L))\Trε
f∞,p

(“∇(Êuε), 0)− f∞,p(“∇(Ûuε), 0) dx∣∣∣∣∣
≤ |“∇(Êuε − Ûuε)|Eε(|Eε| p−1

p + |“∇(Êuε)|p−1
Eε

+ |“∇(Ûuε)|p−1
Eε

)
≤ C|“∇(Êuε − Ûuε)|Eε(|Eε| p−1

p + |“∇(Êuε)|p−1
Eε

+ |“∇(Êuε − Ûuε)|p−1
Eε

)
,

Eε := Lp((DRε × (0, L)) \ Trε ; R2).

(7.17)

We deduce from (5.9), (7.14), (7.15) and from the next estimate (obtained in a similar way as the fifth
estimate of (4.4))

ˆ
(DRε\DRε/2)×(0,L)

|Êuε − 〈Êuε〉Rε |p dx ≤ CRpε ˆ
(DRε\DRε/2)×(0,L)

|“∇Êuε|p dx,
that

ˆ
(DRε×(0,L))\Trε

|“∇(Êuε − Ûuε)|p dx ≤ C ˆ
(DRε\DRε/2)×(0,L)

|“∇Êuε|p + |Êuε − 〈Êuε〉Rε |p/Rpε dx
≤ C

ˆ
(DRε\DRε/2)×(0,L)

|∇uε|p dx.
(7.18)

By (7.13), (7.17), and (7.18), there holds
ˆ

(DRε×(0,L))\Trε
f∞,p

(“∇Êuε, 0)− f∞,p(“∇Ûuε, 0) dx = o(1). (7.19)
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On the other hand, by (1.9), the last line of (4.4), (5.9), (7.14), and (7.15), we have
ˆ

(Srε\S
−rδε
rε )×(0,L)

f∞,p(“∇Ûuε, 0) dx ≤ C
ˆ

(Srε\S
−rδε
rε )×(0,L)

(
|“∇Êuε|p + |Êuε − 〈Êuε〉rε |p/rδpε ) dx

≤ C
(1 + r

p(1−δ)
ε

λε

)
λε

ˆ
Trε

|∇uε|p dx

≤ Cr
2+p(1−δ)
ε

ε2
=
Cr2−p

ε

ε2
rp(2−δ)ε = o(1),

(7.20)

because γ(p) < +∞ and 1 < δ < 2 (see (2.1), (5.10)). By (7.15), (7.19), and (7.20), the first line of (5.13)
is proved. The second line of (5.13) follows from (4.2), (5.12), (7.14), (7.15).

Remark 7.1. De Giorgi’s slicing argument [14] is based on the following observation: if for each ε > 0,
(Aiε)i∈{1,...,lε} denotes a family of disjoint µ-measurable subsets of a set A equipped with a measure µ, and
if (fε) is a sequence in L1

µ(A) such that |fε|L1
µ(A) ≤ C, then for each ε > 0, there exists iε ∈ {1, ..., lε}

such that
´
Aiεε
|fε|dµ ≤ C

lε
. This argument is especially useful when non uniformly integrable sequences

bounded in L1
µ are considered. We employ this argument in the proof of Lemma 7.1 to establish the

existence of the set Hε satisfying (7.2) and in the proof of Lemma 7.2.
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